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ABSTRACT 
In order to provide the capability for submarines to communicate 
through a satellite while remaining submerged and traveling at 
operational speeds a towed buoyant cable array antenna is being 
developed. The array is adaptive from the point of view that the 
direction of the satellite need not be known, the position and 
orientation of the array need not be know, and the shape of the 
flexible array need not be known. A blind equalization 
procedure is used to estimate the signal space from the downlink 
signal and create a spatial matched filter for receive. While the 
frequency division satellite system is intended to allow only one 
signal per frequency slot, the system can also operate in the 
presence of jamming by separating multiple sources spatially. 

Once the downlink receive antenna weights have been obtained, 
the more difficult task of obtaining uplink weights at a separated 
frequency must be performed. Since no data is available for 
blind equalization at the transmit frequency a frequency 
extrapolation method is used to extend the downlink receive 
weights to frequencies beyond where the equalization data was 
collected. This extrapolation is complicated by 2-pi ambiguities 
of the measured phases as well as amplification of measurement 
errors in the extrapolation process. An algorithm has been 
developed that performs well 

1. INTRODUCTION 

An adaptive arra> antenna is being developed to provide the 
capability for submarines to communicate through a satellite 
while remaining submerged and traveling at operational 
speeds[l). The antenna consists of 12 elements in a linear 
floating hose that is attached at the end of a long tow cable. The 
flexible antenna ndes the waves so the instantaneous shape and 
orientation of the array are unknown. The multiple elements 
provide margin to the communication link budget through the 
increased gam compared to a single element system, but the 
principle advantage of the multiple elements is the element 
diversity which provides resistance to element wash-over 
effects[2]. When one or several elements are washed over and 
incapable of receiving or transmitting the remainder of the array 
will carry the load with only a small fade rather than the deep 
dropout that would be experienced by a single element antenna. 

In order to provide the antenna gain and stability from the 
multiple elements, the downlink, i.e., receive, signals are 
combined in an RF beamformer after being phase shifted with 
digitally controlled analog phase shifter. The only amplitude 
control is 1-bit, i.e. the channel can be turned on or off. This 
on/off switch allows an element to be turned off when its 
adaptive weight is very small and the use of the element at full 
gain would add more noise than signal. This results in only a 
modest loss relative to implementation of the actual optimum 
amplitude weight. The beamforming is done in the analog 
domain so that the whole adaptive array system can be used as a 
drop-in antenna for existing communication systems without 
impacting other aspects of the communications hardware or 
methods of operation. The weight determination for receive 
beamforming is based on sampling the downlink signal on the 
multiple elements to determine their phases and is covered in 
section 2. 

When a signal is to be sent up to the satellite a different 
frequency is used, differing from the downlink frequency by 
about 15%. Since there is no signal from the satellite at the 
uplink frequency to sample, an alternative method of determining 
the transmit weights must be used. The method of transmit phase 
determination is based on calculating receive weight phases on 
two different downlink frequencies that are separated. The phase 
on each of the elements is then extrapolated linearly to the 
frequency where the transmit weights are to be used. Since the 
satellite is constantly transmitting on all downlink frequencies 
there is no problem finding two sets of separated adaptive 
weights for the extrapolation process. Transmit beamforming 
with frequency extrapolation is covered in section 3. 

2. RECEIVE BEAMFORMING 

2.1  Algorithm and Estimation Accuracy 

The main goal of making the system adaptive is to phase shift the 
element signals so that their phasors are aligned tip-to-tail to 
create the largest possible resultant and therefore high gain. This 
is accomplished by receiving and sampling the downlink signal 
from the satellite on each of the elements and creating a sample 
covariance matrix. The satellite system that this antenna system 
works with is frequency channelized so there should be only one 
signal, i.e., the signal of interest, passed through the receivers 



and into the sampled covariance matrix. There should only be a 
single large eigenvalue of the matrix corresponding to the signal 
of interest and the eigenvector associated with the largest 
eigenvalue corresponds to the spatial mode of excitation of that 
signal on the array. The conjugate of this primary eigenvector 
then represents the spatial matched filter to best receive the 
downlink signal. At this point any element whose adaptive 
weight is down from the nominal level by more than 6 dB is 
turned off. The actual level where a reduced-signal element does 
more harm than good in the beamforming is a function of the 
number of elements in the system, but converges to -6 dB for 
large numbers of elements in the array. This adaptive process is 
repeated at a rate that is faster than any changes in the ocean- 
antenna environment and is on the order of 10-100 Hz. 

The accuracy of the adaptive phase determination is not as 
critical in this type of beamforming compared to nulling systems 
since a small misalignment of phasers all in a line will still have a 
large resultant. An analysis of Gaussian distributed phase errors 
on the element channels leads to an expected loss (or relative 
gain) in the beamformer of 

G = e    , 

where • is the RMS phase error level in radians. This 
beamforming loss is independent of the number of elements. The 
spread about the expected value, however, does depend on the 
number of elements in the system. This loss equation is plotted 
in Fig. 1 as the solid line along with simulation results for a 10- 
element system, where 10 runs were made at each 0.1 radian 
phase error level. The spread about the expected value is larger 
for large phase errors and for small numbers of elements. 
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Figure 1. RMS phase errors effect the relative gain of the 
beamformer. The theoretical loss is shown along with 
simulation results for a 10-element system as a function 
of the level of the Gaussian distributed errors. 

The number of samples, k, used in forming the sample covariance 
matrix and the signal-to-noise ratio, SNR, on the elements effect 
both the phase error level and the amplitude error level. These 
effects can be incorporated into the relative gain expression 
resulting in a simple approximate expression for loss as a 
function of k and SNR: 

G = e k-SNR 

A plot of this equation is shown in Fig. 2 as the solid line for a 
k-10 sample case. A series of simulations were run, one at each 
integer dB level of SNR, and Fig. 2 shows the inner product of 
the signal vector with each of the eigenvectors as circles in the 
plot. It can be seen that the primary eigenvector is a very good 
estimate of the signal vector, especially at higher SNR levels. 
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Figure 2. Lines show theory and circles show 
simulations of inner product of signal and eigenvectors. 
The simulation was run at each integer dB level. 

The other noise eigenvectors will be orthogonal to the primary 
eigenvector and approximately orthogonal to the signal vector. 
One measure of the quality of the signal estimate that is more 
readily seen in the plot of Fig. 2 is the level of the inner product 
of the signal with the noise eigenvectors. High SNR leads to a 
high degree of orthogonality. A theoretical expression for these 
noise inner products levels, NILs, can be given by 

NIL = 

where N is the number of elements in the system. The equation 
points out that NIL is not nil, although it is close. These 
approximate expressions show that SNR and k can be traded off 
against one another as needed in the system design, however the 
accuracies of the expressions are worse at very low SNR values 
and care should be used in the tradeoff. 

2.2 Experimental Results 

A seven element experimental array was built to prove the 
beamforming concept. A strong CW signal transmitted from a 
helicopter passing the 170 foot towed array was used as a 
substitute for the satellite downlink signal. The power received 
from each of the seven elements is plotted in Fig. 3 and the 
dropouts of individual channels from ocean washover is evident. 



The overall change in power levels over the 40 second run is 
caused by the changing range of the source on the helicopter as it 
flew past from stern to bow. The output of the RF beamformer 
was also received and sampled and is show as the top curve of 
Fig. 3. It is clear that the seven elements provided both gain and 
signal stability. Dropouts on individual channels show up in the 
beamformed signal as small dips on a signal that has much higher 
SNR due to the array gain. 
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Figure 3. The element power vs. time is plotted for a 
helicopter fly-by experiment. The beamformer output is 
the top curve. 

The individual elements are spaced far enough apart so that the 
waves impact them in an independent fashion. If the elements 
are too close, a washout on one element would be highly 
correlated with washouts on the neighboring elements and many 
more elements would be need in the array to reach the 
performance achieved with the widely separated element. Since 
there is a desire to make the array as short as possible with few 
element for simplicity, an interesting tradeoff arises for the array 
design of the spacing and number of elements required to meet 
the performance goals [3] [4]. 

2.3 Weight Smoothing 

In addition to providing gain and signal level stability, it is also 
necessary to be sure that the phase at the output of the 
beamformer is stable so that the signal modulation is not 
corrupted. While this is not a beamforming task in itself, it is 
necessary for any modulation system that depends on the signal 
phase. The beamformer output phase is arbitrarily set at every 
weight update cycle by the adaptive weights which are only 
determined within a random phase factor. Both the old weights 
and the new will provide good beamforming at the transition 
time, but there will be a phase jump at the beamformer output 
unless corrective action is taken. In this adaptive system a 
correction phase is determined for the new weights by applying 
both sets of weights digitally to the new block of data and 
calculating the average phase shift between the output of the old 
weights relative to the new weights. This measured phase offset 

is then used as an adjustment on the new weights before they are 
applied to the RF beamformer. 

2.4 Interference 

While it is intended that the system operate with only one signal 
present during the estimation of the covariance matrix, it is 
possible that a jammer from a direction other than the direction 
of the satellite would try to confuse the adaptive process. If a 
large jammer signal is present along with the smaller desired 
signal, the covariance matrix will have two large eigenvalues 
rather than one. The two eigenvectors associated with the two 
large eigenvalues span the signal space of the two signal vectors. 
To a large extent a one-to-one association can be made between 
each eigenvector and one of the signals if the power of the two 
signals is different, although strictly speaking each eigenvector 
will have a portion of each signal if the signals are not spatially 
orthogonal. With a larger jammer, the signal vector can be 
estimated by the second eigenvalue and eigenvector. If the 
conjugated of this second eigenvector is used as the array weight 
vector then the desired signal will be well received and the 
jammer will be well rejected since the eigenvectors are 
orthogonal to each other. 

The degree of separation of the signals into separate eigenvectors 
can be seen by looking at the inner product of the second 
eigenvector with each of the two signal vectors. The difference 
between the two represents the null depth that is achievable. The 
degree of separation, i.e., the null depth, for spatially separated 
signals can be represented by: 

ND = 
N 

where P„ is the signal power and N is the number of element in 
the system. This is illustrated in Fig. 4 for a 10-element system 
where simulation results are plotted at each integer dB level of 
signal power separations. For most levels of signal power 
separations nulling and signal reception can be achieved. 

This has been confirmed in seatrials with digital beamforming on 
the seven element system where a jammer signal was placed on 
the tow boat while the weaker desired signal was transmitted 
from a helicopter. The jammer to signal level was 16 dB on the 
elements so 40 dB null depth was predicted. By using the second 
eigenvector, the array signal-to-interference-ratio was improved 
by 45 dB relative to the single element signal-to-interference- 
ratio. 

Jamming and interference are not expected in the current 
application, but if they are expected, these results show that 
enough signal separation can be achieved to improve the 
beamformer output. If nulling is desired it is expected that 
digital beamforming and amplitude control would be required for 
better accuracy unlike in the current application. 



0 

-10 

-20 

-30 

-40 

-SO 

-60 

-70 

-80 

C~" 

/   S 

/         l» 

hi                            ' * 

— —   Sign is interference 
^— Sign is desired signal 

\' 

-30 -20 -10 0 10 20 

Power    / Power,. (dB) 

30 

Figure 4. Simulation results show the degree of 
alignment between the second eigenvector and the 
desired signal and the jammer interference. 

3. TRANSMIT BEAMFORMING WITH 
FREQUENCY EXTRAPOLATION 

3.1 Algorithm 

Beamforming on transmit for the uplink to the satellite is a much 
more difficult task than receive beamforming on the downlink 
because the uplink frequency is separated from the downlink 
frequency by about 15%. There is no data at the uplink 
frequency to use for the weight estimation. There are, however, 
many downlink frequencies that are constantly in use, so receive 
weights can be estimated at multiple separated receive 
frequencies. The approach taken in this design is to estimate 
receive weights at two separated frequencies and linearly 
extrapolate the phase of each element to the transmit frequency, 
using the first two terms of a Taylor series expansion of the 
element phase. 

3.2 Weight Bandwidth 

Before investigating the extrapolation, it is useful to look at the 
effective bandwidth of array weights. If array weights are used at 
a frequency that is different from the frequency where they were 
calculated, they will still work with a small degradation as long 
as the frequency change is not too big. The loss due to the use of 
array weights with a frequency change of Af can be approximated 
by 

sin 
L = - 

-A/LsinÖ 

where c is the speed of propagation, L is the length of the array, 
and 0 is the angle of arrival measured from broadside to the 
array. This leads to a weight bandwidth, BW, of approximately 

BW =—=— 
Lsinö 

The 15% change in frequency in this application is well beyond 
one half of the effective weight bandwidth calculated for 
moderate arrival directions of 60 degrees off broadside and an 
array length of 100 feet. This means that new transmit weights 
will have to be estimated. 

33 Frequency Extrapolation 

Two potential problems arise with frequency extrapolation of the 
element weights. The actual phase on receive is only know 
modulo 2pi since that is what comes out of the receivers. The 
extrapolation will yield erroneous results if unknown additions of 
2pi are left out. The other complication arises from the 
amplification of measurement errors that can occur with large 
levels of extrapolation. The 2pi ambiguity problem will be 
considered first. 

The truncated Taylor series of the eigenvector phases can be 
expressed as 

03=01 + 
fi-fiy W») 

where 0s are the phases, the subscripts refer to the frequencies (1 
and 2 are the lower and upper receive frequencies and 3 is the 
higher transmit frequency), and As refer to frequency or phase 
differences. The factor in parentheses on the right will be 
referred to as M or the extrapolation ratio, i.e., 

M = 
4fM 

The actual receive phases or A phases on the channels can be 
expressed as 

Tactual = 2m+$t measured n = 0,±1,±2,... 

If the extrapolation ratio, M, is restricted to be an integer then the 
value of Mfacucfmod 2K) is the same as M^mcasur^mod 2it) so it 
does not matter that we do not know the value of n. The 2K 
ambiguity problem is eliminated by using integer extrapolation 
ratios. 

In the current application there are many downlink receive 
frequency channels that can be used as an auxiliary receive 
weight estimation frequency for the extrapolation. An auxiliary 
channel can be found such that the extrapolation ratio is close to 
an integer ratio. The previous analysis of the effective bandwidth 
of the weights shows that integer extrapolation to a frequency 
that is close to the uplink frequency is good enough. 



The problem of measurement noise amplification in the 
extrapolation process can be thought of as arising from the 
derivative in the Taylor series, since is well know that 
differentiating noise will amplify errors. If an assumption is 
made that the RMS measurement phase noise is the same at each 
of the two downlink receive frequencies an expression for the 
phase error amplification factor can be given by 

S   25 

A = Jl-2M + 2M\ 

This says that if the RMS phase error at the two downlink receive 
frequencies is <7, then the RMS phase error after using an 
extrapolation ratio of M is Aa at the uplink transmit frequency. 
The amplification factor, A, is always greater than 1.0 and is 
approximately linear for Ms ranging from one to five. A plot of 
the amplification factor is shown in Fig. 5. It can be seen that if 
a certain phase error level is required on transmit in order to 
minimize the beamforming loss then the phase error requirement 
on the receive weights is five times tighter for an extrapolation 
ratio of 4.0. 

2 3 4 5 

Extrapolation Ratio. M 

Figure 5. The phase error amplification factor, A, is 
approximately a linear function of extrapolation ratio, M, 
for values of M ranging from one to five. 

It can be calculated and it is shown in Fig. 1 that if the transmit 
beamformer loss is to be limited to about 1.0 dB, then the RMS 
transmit phase error must be limited to about 0.5 radians (28 
deg.). The plot in Fig. 6 shows the limit of RMS receive phase 
errors that must be obtained in order to achieve the required 0.5 
radians at the transmit frequency after extrapolating. It can be 
seen that transmit beamforming becomes quite difficult for large 
extrapolation ratios. 

2.     5 

2 3 4 

Extrapolation Ratio, U 

Figure 6. The RMS receive phase error that is required 
in order to achieve 1 dB of transmit beamforming loss is 
plotted as a function of the extrapolation ratio, M. 

3.4 Experimental Results 

A field experiment has been conducted to prove the concept of 
transmit extrapolation beamforming using the receive-only test 
array described earlier in Sec. 2. Modifications were made to the 
system to accommodate the transmit demonstration through a 
receive-only test system by using reciprocity. Four elements 
were used. Signals were transmitted from the helicopter at three 
frequencies, representing the two downlink frequencies and the 
one uplink frequency. Adaptive weights were calculated using 
the receive algorithm at all three frequencies. The two sets of 
weights at the downlink frequencies were then extrapolated to 
estimate weights for the transmit frequency. These extrapolated 
"transmit" weights were then compared to the receive adaptive 
weights that were calculated directly at the transmit frequency by 
performing digital beamforming with the two sets of "transmit" 
weights. The results are plotted in Fig. 7 along with the powers 
of each of the four individual channels for a case with an 
extrapolation ratio of 2.0. It is clear that both sets of transmit 
weights perform well with only a small loss using the 
extrapolated weights relative to the directly calculated (non- 
extrapolated) weights. 
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Figure 7. "Transmit" extrapolation beamforming results 
for an experiment using receive data and reciprocity for 
an extrapolation ratio, M, of 2.0. 
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4. SUMMARY 

An adaptive beamforming system has been designed and built 
that will enable submarines to communicate through satellites 
while remaining at operational speeds and depths. The downlink 
receive beamforming is based on weights derived from the 
primary eigenvector of the sample covariance matrix. Only 
moderate phase accuracy is required to provide both gain and 
element diversity to overcome the dropouts in the ocean 
environment. Interference signals can be spatially separated from 
the desired signal from the satellite with this type of algorithm, 
although no interference is anticipated in this application. 

The transmit uplink beamformer cannot use the same weights as 
are used on the receive downlink because the uplink and the 
downlink frequencies are separated by about 15%. A frequency 
extrapolation method is used where the phases and derivatives of 
phases with respect to frequency are estimated and used to 
project the element phases to the uplink frequency by the use of a 
truncated Taylor series. In order to avoid 2pi ambiguity 
problems in the extrapolation, it is necessary that the frequency 
gap to the uplink frequency be an integer multiple of the 
frequency gap between the two downlink frequencies. An exact 
integer ratio is not required since the weights have a reasonably 
sized bandwidth, based on the array length and the signal angle 
of arrival. Much greater accuracy is required in the receive 
weight estimation in order to have reasonable accuracy at the 
transmit frequency after extrapolation since phase errors are 
amplified in the extrapolation process. 

Both the receive and transmit algorithms and beamforming have 
been tested at sea with good results. 
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ABSTRACT 

A common approach to suppressing jamming or RFI is 
(adaptive) beamforming, where an antenna pattern null 
is formed by appropriately combining multiple receive 
channels. A sidelobe canceller is a common such 
implementation. 

Beamforming is undesireable when the interference 
source is in the mainlobe of the radar, because the 
antenna pattern null created by the beamformer 
produces a region where ground imaging cannot be 
performed. 

This paper presents two conceptual alternatives to 
spatial beamforming. The first approach produces a 
SAR image by combining the pulse returns from multiple 
channels in a non-separable way. This "space time 
beamforming" is shown to produce a null which is 
significantly narrower and shallower than that produced 
by conventional spatial beamforming. Further, we 
demonstrate that the space time beamforming null 
becomes narrower as the length of the synthetic aperture 
(Le. the doppler resolution) increases. 

A second alternative to spatial beamforming is presented 
which is useful when the interference source is non-white 
or when it is desirable to estimate the (spatially 
localized) interfering signal This signal separation 
approach allows generic localized sources suck as 
moving target signatures, vibrating target paired echoes, 
etc. to be separated from the clutter data. 

1. INTRODUCTION 

A typical approach to radio frequency interference (RFI) 
and jamming suppression for multi-channel radars is 
(spatial) beamforming [1]. Here, a linear combination of 
receive channels is used to produce an antenna pattern 
null on receive in the direction(s) of the interference. A 
sidelobe canceller is a common such implementation. 

Spatial beamforming works well when the RFI source is in 
the sidelobes of the radar, however in the mainbeam, 
spatial beamforming produces a deep, wide notch. For 
imaging radars, this notch produces a region where clutter 
reflectivity cannot be estimated. 

In this paper we present two alternative approaches to 
spatial beamforming. The first uses non-separable space 
time beamforming to produce a much narrower, shallower 
null. The second approach provides a method for 
separating the clutter and localized interference signals 
when both of these are of interest. We compare the 
performance of spatial beamforming vs. space time 
beamforming in terms of the width and depth of the clutter 
notch produced. 

Consider SAR image formation as a problem of estimating 
the radar cross section of each range/Doppler cell in the 
presence of thermal noise and localized RFI. We consider 
the width of the region of range/Doppler cells whose 
Cramer-Rao variance bounds exceed a given threshold. 
We show that the non-separable spatial (multiple 
channels) and temporal (multiple pulses) processing, 
produces a much narrower null width (as defined above) 
than conventional separable beamforming. 

The example results shown in this utilize video phase 
history data collected by Veridian System's DCS radar 
with synthetic RFI introduced prior to image formation. 

The author would like to thank Mike Beauvais for his help 
with producing the examples shown in the paper and Mark 
Stuff for several interesting discussions. 

2.        TECHNICAL DISCUSSION 

2.1       Spatial Beamforming 

A typical approach to RFI suppression is adaptive 
beamforming. Here, a particular coherent combination of 
the receive channels from a multi-channel antenna is 
chosen so as to maximize the signal to interference plus 
noise (SINR) ratio in a particular steering direction. This is 
illustrated in Figure 1 and Figure 2. 



Figure 1: Multi-channel antenna 
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Figure 2: Beamforming applied to SAR imaging. 

The Gauss-Markov theorem provides a closed-form for the 
weight vector w which maximizes this SINR when the 
covariance of the interference and noise are known. 

We model our interference covariance as the sum of a 

spatially white thermal noise term with variance a\ and a 

(rank 1) spatially localized RFI term which is the outer 

product of the steering vector z^ =(z°RFI,...^-))to 
the RFI source with itself. 
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Here   zRFI = exp H^} is the complex root of 

unity corresponding to the channel-to-channel phase 
change due to the position of the RFI source in the scene 
(see Figure 1). 

The weight vector is given by 

w = Ru ( zsl ■t). 

where t is a tapering vector and . denotes the Hadamard 
(pointwise) product. The weight vector is optimal when 
t = (1,1,..., 1), however for purposes of sidelobe reduction, 

a weighted taper is generally used. 

A typical implementation of beamforming is a sidelobe 
canceller. Here the main subarrays of the antenna are used 
for beamsteering and a small number of auxiliary channels 
are then adaptive combined with the main channel for RFI 
cancellation in the sidelobes. 

Beamforming can be applied to SAR image formation by 
first forming a coherent (spatial) combination of the receive 
channels and then passing this into a SAR image formation 
processor which then forms the temporal combination of 
received pulses appropriate to scene reconstruction. This 
approach is shown in Figure 2. 

This separable spatiakhen-temporal processing works well 
when the RFI source occurs in the sidelobes, but has 
undesirable effects as the RFI source enters the mainlobe. 
The -40dB Taylor tapered adapted antenna patterns for 
various RFI source locations are shown in Figure 3. 
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Figure 3: Beamformer antenna patterns. 

As can be seen, an RFI source in the sidelobes has very 
little effect on the sidelobe levels or on the mainlobe shape. 
However as soon as the source enters the mainlobe, the 
sidelobe levels rise and the mainlobe distorts. The worst 
degradation occurs when the RFI source coincides with the 
beamsteering direction. In this case a wide, deep notch 
appears in the mainbeam and the sidelobes are elevated by 
20dB. 

2.2       Space Time Beamforming 

The problem inherent with separable spatial-then-temporal 
beamforming for SAR imaging is that the optimal weights 
maximize the SINR only in the steering direction. 
Simultaneous maximization of SINR in all directions 
inherently requires a non-separable approach. To develop 



such an approach, we consider the very simple DPCA data 
model shown in Figure 4. 
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Figure 4: Space time signal model. 

Here a received data sample shown in the radar data cube 
is indexed by channel (element), pulse and wavelength and 
consists of a deterministic clutter coefficient and a random 
noise + RFI component. We model the clutter as stationary 
and thus dependent only on the spatial location of the 
receiving antenna phase center. For illustration, we 
consider the simple DPCA situation where the antenna 
moves one phase center spacing between pulses. In this 
case, the clutter coefficient cm+n in xnjn depends on the 

sum m + n. 

Written as a matrix equation in the case of M =4 pulses 
and N = 3 channels we have 
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We model the interference as consisting of a spatially and 
temporally white noise component and a spatially localized 
and temporally white RFI source. 
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corresponding to the position of the RFI source as shown 
in Figure 5. 

Figure 5: RFI source geometry. 

The Gauss-Markov theorem can be used to construct the 
best linear unbiased estimator for the clutter coefficients in 
this colored interference environment. The clutter 
estimator is given by 

C=(Z
H
R;

,
Z)

-1
Z

H
R;

1
X 

The purpose of this paper is to present and compare 
conceptual approaches to RFI suppression without 
introducing actual algorithms, however it's worth noting 
that the BLUE for clutter coefficient estimation has a matrix 
structure (Figure 6) which makes it particularly amenable to 
solution using linear solvers. Evaluation of the matrix- 

vector product  ZHR^,x amounts to evaluating the Z- 

transform of x   at various locations and thus can be 
efficiently evaluated using the chirp-Z transform. Further, 

it's straightforward to show that the matrix ZHR~1Z has a 

banded matrix structure with upper and lower bandwidths 
N-l, thus efficient sparse matrix solvers can be applied. 

Bandeö matrix, 
bandwidth = N-1 
«■■„rii-nilA        ■!    i   > 

Quickly evaluated using 
the chirp-z transfonn 

^ i A.     ii i i mi. .lining. 

c = 

Figure 6: Space time beamforming matrix structure. 



Figure 7 shows the results of the separable spatial 
beamforming and non-separable space-time beamfoiming 
approaches applied to real SAR video phase history with 
synthetic RFI. 
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Figure 7: Spatial vs. space time beamforming. 

This example corresponds to a radar with a standoff range 
of 100km, having a 3m antenna. The simulation uses a CNR 
of 26dB and a JNR of 38dB with N = 6 channels and 
Af = 2750 pulses. 

The separable spatial beamforming null is seen to be 
deeper and wider than its space-time counterpart. In fact, 
the SINR in the direction of the RFI is actually worse than 
had no beamforming been performed. This is because the 
separable beamforming is only optimal in the steering 
direction. The space time beamformer is never any worse 
than the case of no beamforming and recovers most of the 
image everywhere but very near the RFI source. 

2.3       Beamforming Comparison 

The spatial and space time beamforming approaches to RFI 
suppression can be compared somewhat more rigorously 
by considering the clutter to noise ratios produced by 
these methods as a function of the azimuth position of a 
clutter patch and the azimuth position of the RFI source. 
These clutter to noise ratios are given by 

CA«spatiaI=M 
Ow-t^itfow.t) 

CNR. space-time" 
{to+h+-+tM+N_2Y 

(Vdu.-tffz^zJ'Vc.m-t) 

These clutter to noise ratios for the spatial and space time 
beamforming are shown in Figure 8. 
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Figure 8: CNR for spatial (left) vs. space time (right) 
beamforming. 

The x-axis corresponds to the azimuth position of the 
clutter patch and the y axis is the azimuth position of the 
RFI over a 5km scene. The effects of the RFI position 
(mainlobe vs. sidelobe) on the spatial beamforming are 
evident here. No antenna pattern can be seen for the space 
time beamforming because the individual subarrays 
patterns were not modeled. 

The width of the "notch" produced by beamforming can be 
defined in terms of a minimally acceptable CNR level. 
Figure 9 compares the two approaches as the number of 
pulses used increases (and the doppler resolution gets 
finer). As can be seen, the spatial beamformer produces a 
null whose depth is relatively independent of the number 
of pulses used and whose width improves only slowly with 
increasing doppler resolution. By contrast, the depth of 
the space time beamformer notch rises as the number of 
pulses increases and the width improves dramatically with 
increasing doppler resolution. 

This observation suggests that the width of the null is 
proportional to the doppler resolution for space time 
beamforming, although the author has not proven or 
disproved this as yet. 

and 
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Figure 9: CNR comparison of spatial (left) vs. space time 
(right) beamforming at various doppler resolutions. 

2.4       Signal Separation 

Space time beamfoiming B a potentially useful technique 
for suppressing RFI in the mainlobe, however in some 
situations, the interference may be temporally colored or 
even highly structured. Further, for many applications, the 
"RFI" may correspond to a spatially localized signal of 
interest. Such signals can include covert RF tag 
communication signals, paired echoes from rotating or 
vibrating objects [3] or even returns from moving targets 
[2,4,5] where an objective might be to image the moving 
targets. 

In such situations, we would like a method for extracting 
the clutter signal from the localized source. Figure 10 
illustrates the distribution of clutter and localized source 
energy in the radar data cube. The relation between the 
azimuth location of a stationary patch of clutter and the 
doppler frequency it manifests causes the clutter energy to 
concentrate onto a 2D "clutter ridge". The localized source 
energy also concentrates onto a plane at the azimuth 
location of the source. It's reasonable to expect, then, that 
these signals can be separated except where they intersect 
in the data cube. 

Figure 10: Signal separation cartoon. 

We introduce another data model in which both the clutter 
and the localized source are deterministic quantities. The 
interference in this case is simply white thermal noise. As 
before, we model the clutter signal as depending only on 
the spatial location of the receiving phase center (Figure 
11). 
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Figure 11: Signal separation data model. 

The localized source, on the other hand, is modeled as the 
product of a temporal term sm depending only on the 

pulse number, and spatial term z" depending on the phase 

center n and azimuth position z of the source. In matrix 
notation, we have 
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Since our interference is spatially and temporally white, the 
best estimator of the clutter and signal coefficients is the 
least squares solution 

CS=(ZHZ)-1ZHX 

As might be expected, the matrix Z is not full rank. This 
rank deficiency corresponds to the intersection region 
(Figure 10) between the clutter ridge and localized source. 
This problem can be corrected by introducing an extra row 
in Z which effectively allows us to specify whether the 
inseparable energy in the intersection should be included 
with the clutter signal or the localized source signal. 

Figure 12 shows the result of applying this signal 
separation technique to 3 channel SAR video phase 
history with synthetic RFI and then processing the 
separated signals into SAR images using a conventional 
image formation processor. 

Figure 12: Signal separation example. 

Here we used 1024 pulses and set up the simulation to 
have a CNR of 30dB and a JNR of 40dB. We included the 
overlap region with the clutter signal. 

Our initial results suggest that the width of the intersection 
region wherein the clutter cannot be discerned from the 
source is proportional to the doppler resolution of the 
radar, and thus can be made more narrow by collecting 
more pulses. 

3.        CONCLUSIONS + FURTHER WORK 
The purpose of this paper was to suggest three conceptual 
approaches to the problem of RFI mitigation and more 
generally the problem of separating the clutter signal from a 
localized source. It was shown that non-separable space 
time beamforming is necessary to effectively combat 
mainbeamRFI. 

Any practical implementation of these techniques would 
have to solve three problems not addressed by the paper. 
The first problem is determining the azimuth position of the 
RFI or localized source. The second is the estimation of 
the interference environment (or at very least, the noise 

o\ and RFI oj variances). Lastly, the problem of channel 

balancing must be addressed. Innovative adaptive signal 
processing approaches will be required to solve these 
problems. 
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Abstract—The performance of a parametric space-time 
adaptive processing (STAP) method is presented here. 
Specifically, we consider signal detection in additive dis- 
turbance containing compound-Gaussian clutter plus ad- 
ditive Gaussian thermal white noise. Performance is 
compared to the normalized adaptive matched filter and 
the Kelly GLRT receiver using simulated and measured 
data. We focus on the issues of detection and false alarm 
probabilities, constant false alarm rate (CFAR), robust- 
ness with respect to clutter texture power variations, 
and reduced training data support. 

I. INTRODUCTION 

This paper undertakes a performance comparison 
of several candidate space-time adaptive processing 
(STAP) algorithms in compound-Gaussian clutter for 
airborne radar applications. The STAP problem is 
equivalent to hypothesis testing on a complex (base- 
band) measurement (test data) vector x 6 CJJVwith J 
channels and N time pulses. Typically, x contains an 
unwanted additive disturbance d with unknown covari- 
ance matrix Rj and may contain a desired signal oe 
with unknown complex amplitude, o, and known signal 
steering vector e. The binary detection problem is to 
select between hypothesis Ho : a = 0 and Hi : a ^ 0 
given a single realization of x. 

Current research [1-10] is addressing the detection 
problem wherein d contains partially correlated clutter 
described by a product model [11]. Here, the clutter 
is modeled as a Gaussian process with random power 
variations (scale changes) over range. This model is 
the basis of the spherically invariant random process 
(SIRP)(or compound-Gaussian) clutter model, which 
includes the Weibull and K-distributions as special 
cases. 

In [6,12,13] the optimal processor for detecting a 
rank one signal in SIRP clutter was shown to be equiv- 
alent to a matched filter compared to a data dependent 
threshold. With a simple normalization, this test can 
be cast in the form of the normalized matched filter 
(NMF) test compared to a data dependent threshold, 
the calculation of which requires knowledge of the un- 
derlying clutter probability density function (PDF). De- 
termination of the clutter PDF imposes onerous train- 
ing data requirements. Consequently, ad hoc methods 
have been popular in recent studies [7-10]. A popular 

ad-hoc method is the NMF test compared to a data in- 
dependent threshold, which was independently derived 
in [7,8]. 

The work of [14] (and references therein) considered 
an invariance framework for hypothesis testing in Gaus- 
sian noise having a covariance matrix with known struc- 
ture but unknown level. Interestingly, the test statistic 
reported in [14] is identical to the NMF of [7,8]. The 
work of [14] also extended the NMF test to allow for an 
unknown noise covariance matrix and unknown scal- 
ing, if, denoting the ratio of the test and training data 
variances. We refer to this test as the normalized adap- 
tive matched filter (NAMF). The invariance principle of 
[14] (and references therein), and perforce constant false 
alarm rate (CFAR), applies only when all the training 
data vectors are scaled identically [10]. 

In SIRP clutter, however, each training data vector 
realization is scaled by a different random parameter. 
Although the NAMF has no known optimality prop- 
erties for SIRP clutter, it has the important feature 
of minimizing dependence upon texture power. Some 
performance results of the NAMF in SIRP clutter are 
presented in [7,8]. 

Multichannel model-based (i.e., parametric) methods 
for target detection and estimation in clutter are de- 
scribed in [2-4,9,10,15-17]. In particular, a model- 
based STAP method called the non-Gaussian para- 
metric adaptive matched filter (NG-PAMF), requiring 
knowledge of the underlying clutter statistics was first 
proposed in [3]. 

In this paper, the performance of the normalized 
parametric adaptive matched filter (N-PAMF) [10,18] is 
evaluated and compared with that of several candidate 
STAP algorithms. Its form is the model-based approx- 
imation of the NAMF. Statistical equivalence of the N- 
PAMF test to the NG-PAMF test was shown in [10]. 
However, unlike the NG-PAMF, the N-PAMF test re- 
quires no 'a priori' knowledge of the disturbance statis- 
tics [10]. This feature is important in real-time applica- 
tions where such information is lacking. Robustness of 
Pd over a broad range of K-distribution shape parame- 
ters (a) ranging from Gaussian (a = oo) to high-tailed 
PDF (a = 0.1) is presented here. These considerations 
enable assessments of CFAR performance with respect 
to the amplitude probability density function (APDF) 
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associated with clutter texture variations. Finally, we 
examine performance versus data support size used for 
disturbance estimation. This issue is of considerable 
importance in applications where training data support 
is limited. 

II. THE CLUTTER MODEL 

Clutter observed in a single channel admits a repre- 
sentation of the form 

Ck(n) = vk(n)gk(n) (1) 

where a complex-Gaussian process gk(n) (speckle com- 
ponent) corresponding to time n and range cell k is 
modulated by a statistically independent non-negative 
process vk(n) (texture component). Frequently, vk(n) 
is approximated as a random variable V over k, but 
constant over time if it has long temporal coherence. 
Thus. (1) reduces to the representation theorem [11] 
for an SIRP and is given by 

Cfc(ra) =vkgk(n). (2) 

For the multichannel problem, the clutter in each of the 
J channels is given by (2). The PDF of V, fv(v): is de- 
fined to be the characteristic PDF of the SIRP. The 
amplitude of ck(n) is K-distributed for Generalized- 
Chi distributed fv(v) and includes the Gaussian model 
(a = oo) as a special case. The disturbance d con- 
tains partially correlated clutter c modeled by a K- 
distributed amplitude, with PDF 

Q<x+lra 

fR(r) = 2a_lr{a)Ka^(ßr)    r>0, ß, Q>0    (3) 

where ß and a are the distribution scale and shape 
parameters, respectively, Kv{.) is the modified Bessel 
function of the second kind of order v, and T(.) is the 
Eulero-Gamma function. Small values of a result in 
heavy-tails for the PDF of (3). From (2), the clut- 
ter covariance matrix is Rc = RgE(V2) where R«, € 
QJNXJN ig the covariance 0f the Gaussian (speckle) 
component and E(V2) relates to the texture power. 

In practice, Rd is unknown, and must be estimated 
from a signal-free JN x K secondary data matrix, Z, 
whose columns are assumed to be statistically indepen- 
dent and identically distributed (iid) as the test data. 
For Gaussian disturbance, the maximum likelihood 
(ML) estimator is the sample matrix Rd = ZZH/K. 
However, Rd is not the ML estimate for compound- 
Gaussian clutter. 

III. TEST STATISTIC DESCRIPTIONS 

We now consider several non-adaptive and adaptive 
detection test statistics in this section. 

A. Non-Adaptive Test Statistics 

For known R,i, the optimal test for detecting a rank 
one signal in Gaussian interference is given by 

AMJ? = 
e*R: 

e^R^e   Ä 
< -WF- (4) 

In some instances, the test data vector can have a co- 
variance matrix T)2Kd, where rf is an unknown level. 
The phase invariant matched filter (PI-MF) test for 
these problems is expressed as [14] 

Ap/MF = 
Je^R^x|2 « 

^e^R^e HO 
< Ap/MF (5) 

where e and x are the concatenated JN x 1 signal 
'search' steering and data vectors, respectively. The 

inner product of whitened vectors b = Rd *x and 

f = Rd 
2e is the matched filtering operation. Although 

(5) does not require knowledge of signal phase, it does 
require knowledge of the level JJ

2
 to be CFAR. The op- 

timal test for this problem is the NMF test [14] given 
by 

le^R-^xl2 »i 
ANMF = [e*R-e][xHR-x] l0 

W'       (6) 

The test statistic of (6) is simply the squared magnitude 
of the inner product of the vectors f and b normalized 
by their squared norms, so that 0 < AJVMF < 1. 

B. Adaptive Test Statistics 

For the adaptive problem, Rf replaces Rd. Conse- 
quently, the adaptive version of the test of (4) denoted 
as the AMF is given by 

AA 
äHRJ .12    H, 

MF — 
e"R: 

< AAMF- (7) 

Observe that AAMF is simply the adaptive version of 
AMP. For the special case of r\ = 1, this test was devel- 
oped independently in [19,20] where its CFAR behavior 
was noted. This property is lost when 77 ^ 1. 

The adaptive version of the test of (6) is given by 

ffi 

ANAMF = [e4C-eJ[x4-x] lXNAMF-     (8) 

Another adaptive detection test known as the Kelly 
GLRT [21] is expressed as 

AGLBT = 
e
ffR: 

[e«R-1e][l + 
K 

>K\GLRT    (9) 
»O 

14 



where 0 < XGLRT < 1- For K -* oo, the tests of (7) 
and (9) converge to the test of (4), whereas the test of 
(8) converges to that of (6). 

In this paper, we consider the performance of the 
tests of (7)- (9) in compound-Gaussian clutter. No op- 
timality or CFAR claims of these tests can be made for 
the case of SIRP disturbance. 

C. Model-Based STAP Tests 

For multichannel model-based methods [15], the 
whitening operation is performed using prediction error 
filters (PEF) involving time series or state space archi- 
tectures. We define yp(n) as the Jxl vector error resid- 
ual output of a P(fe-order multichannel linear filter. For 
a multi-channel (vector) autoregressive model, a tapped 
delay line architecture is used where the Pth order filter 
coefficients, A(fe), are estimated from Z using a multi- 
channel parameter estimation algorithm. These J x J 
matrix coefficients provide a succinct description of the 
spatio-temporal disturbance correlation. Specifically, 

yp(ra) = D0 
5L0 

1up(n) 

: D0 
5Lö l[x(n|#!) + ]TA(*)x(n - k + P\HX)] 

■■0,1,...,N-P-1 
(10) 

where (10) implicitly defines the temporally whitened 
Jxl error residual Up(ra), with covariance Su. In 
practice, Su is unknown and the estimation algorithms 
produce its estimate S„. However, this paper em- 
ploys £„ obtained by averaging the outer products of 
Up(n), where Up(ra) results from a transformation of 
the secondary data by the prediction error filter with 
fixed A(k). The LDLH decomposition of S„ yields 
(Lo,Do) which are used to spatially whiten up(n) [15]. 
Finally, yp(n) is obtained by a transformation of x(n) 
by the multichannel prediction error filter with coeffi- 
cients (Lo,Do) and A(k) as denoted in (10). Similarly, 
the transformed steering vector s(n) is obtained by se- 
quencing the sequential form of the 'search' steering 
vector e(n) through the PEF [3,16]. The normalized 
parametric adaptive matched filter (N-PAMF) [10,18] 
is now defined as 

AN N-PAMF ■ 

N-P-l 

Y,   sH(n)yp(n) 

N-P-l 

]T   sH{n)s(n) 
I    n=0 

N-P-l 

J2 y?(n)yp(n) 
n=0 

(11) 
A related parametric adaptive matched filter (PAMF) 
test was first derived in [3] for Gaussian disturbance. 

The PAMF test is identical to (11) but excludes the 
second bracketed denominator term. In [16], several 
estimation algorithms are considered in the PAMF im- 
plementation for Gaussian disturbance. In this paper 
the multichannel least squares method is used for filter 
parameter estimation. 

IV. ANALYTICAL RESULTS 

The probability of false alarm and probability of de- 
tection for NMF operating in compound-Gaussian clut- 
ter (without background white noise) are given by [9] 

Pfa-NMF = P(h-NMF > ^NMF\HO) = (1—XNMF) 

(12) 
Pd-NMF = 1 - (1 - XNMF)™-1 

JN- 

x X> (I-N
\N

F
MF)

k9k[A2{1 ~ XNMF)] 

(13) 

T(JN) 
where g{.) is denned in [9] and bk = - (jfe + mjN _ fc). 

The expressions for P/0 and Pd for the NAMF oper- 
ating in Gaussian clutter are given by [9] 

Pf, a-NAMF 

Pd-. NAMF 

-f JO 

= 1-fü 

Mi) 
[1 + (1 - J)XNAMF]

L 

1 

dy      (14) 

+ (1 - I)\NAMF]
L 

m=l v ' 
(         A(l — 7) \ 

x[l-gammainc   —— — ,m Ufrirfd-y 
\1 + (1 -l)*NAMF       J ■ I)XNAMF 

(15) 
where T, gammainc(.) and fr(j) are defined in [9]. 

Corresponding Pfa and Pd expressions for the NAMF 
operating in SIRP clutter are difficult to derive. This is 
due to the fact that the ML estimate of the SIRP covari- 
ance matrix is not available in closed form [22]. Hence, 
the NAMF PDF cannot be determined analytically. 

The Pfa and Pd expressions for the N-PAMF and 
PAMF operating in both Gaussian and non-Gaussian 
clutter scenarios are lacking since the analysis be- 
comes mathematically intractable. Consequently, per- 
formance evaluation of these methods is carried out by 
Monte-Carlo techniques. 

V. PERFORMANCE RESULTS 

Performance is now presented for the detectors de- 
scribed above. Probability of detection (Pd) is com- 
puted for a Pfa of 0.01 via 100,000 Monte-Carlo tri- 
als using a physical model of an airborne radar sce- 
nario [4]. The target signal is located at a normal- 
ized Doppler frequency fdt = 0.15 (unless otherwise 
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Output SINR (dB) 

Fig. 1.   Pd versus output SINR in Gaussian disturbance 
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Fig. 2.   Pd versus SINR in K-distributed Clutter a = 0.5 

stated) and azimuth 0 = 0. The clutter ridge is located 
along the normalized angle-Doppler plane diagonal with 
a 40 dB (per pulse, per channel) clutter-to-noise ra- 
tio(CNR). The one-lag clutter temporal correlation pa- 
rameter [15] is 0.999. Disturbance correlation estimates 
are obtained using K secondary data cells. The output 
signal-to-interference plus noise ratio (SINR) is defined 
as SINR = |a|2eHRJJe. All performance results are 
obtained with compound-Gaussian clutter plus additive 
thermal white noise. 

Figure 1 shows Pd versus output SINR for Gaussian 
disturbance with rf = 1. Shown here are analytical 
Pd plots for the MF and NMF with known Rd. The 
analytical NAMF Pd curve is also shown for K=128. 
Monte-Carlo generated Pd results for the PAMF(MLS), 
N-PAMF(MLS), NAMF, and Kelly GLRT are depicted. 
Performance of the Kelly GLRT and the NAMF are 
indistinguishable for this example. Note that the N- 
PAMF method with P = 3, nearly achieves the NMF 
performance^ for low sample support size K=12. Sin- 
gularity of Rd for K=12 precludes implementation of 
the AMF, NAMF, and Kelly GLRT. Figures 2 and 3 
display Pd versus output SINR for the NMF, NAMF, 
N-PAMF(MLS), Kelly GLRT and AMF receivers for 
clutter processes with shape parameters a = 0.5 and 
a = 0.1, respectively. Observe the robust behavior 
of the N-PAMF, NAMF, Kelly GLRT in compound- 
Gaussian clutter. The Kelly GLRT outperforms the 
NAMF at high SINRs, whereas this condition reverses 
at low SINRs. Figure 4 plots Pd versus the clut- 
ter shape parameter a at output SINR=6dB with a 
ranging from 0.1 to 1,000. For the K-distribution, 
Q > 4 approximates the Gaussian case. The results 
reveal the robustness of the N-PAMF and NAMF tests 
over a wide range of shape parameters. However, the 
N-PAMF(MLS) shows superior performance approach- 
ing that of the NMF. Performance of the PAMF and 
AMF degrade in heavy-tailed compound-Gaussian clut- 

0.9 
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o 
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£ 0.3 -*- Kelly GLRT 

-n- AMF 

%.2 

0.1 
■ 

Output SINR (dB) 

Fig. 3.   Pd versus output SINR in K-distributed Clutter a -. :0.1 

ter. However, for a > 100 (Gaussian region), they 
incur no performance degradation. Figure 5 shows 
Pfa versus shape parameter a with each test statistic 
threshold held fixed to obtain P}a = 0.01 for Gaus- 
sian disturbance (a = oo). A significant increase in 
Pfa for the NAMF and Kelly GLRT confirms their lack 
of CFAR with respect to texture variations. Figures 
6, 7, and 8 depict plots of P/a versus threshold for 
the Kelly GLRT, NAMF, and N-PAMF, respectively, 
for several K-distribution shape parameter values. The 
curves for the N-PAMF exhibit much lower variability 
compared to the Kelly GLRT and NAMF, reflecting 
a robust CFAR performance with respect to the tex- 
ture PDF. Figures 9 and 10 plot the test statistic vs 
range cell using data from the Air Force Research Labo- 
ratory (AFRL) Multichannel Airborne Radar Measure- 
ment (MCARM) program with an inserted target signal 
at range bin index 310. Specifically, data correspond- 
ing to acquisition '220' from flight '5' cycle 'e' is used in 
the examples presented here. For these results, we use 
J=8 and N=32. We define the performance measure *i 
as the ratio of the test statistic at the test cell to the 
mean of the test statistics formed from adjacent cells, 
and *2 as the ratio of the test statistic at the test cell 
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to the highest test statistic formed from adjacent cells. 
Figure 9 plots the test statistics for the NAMF with 
K=512 and N-PAMF(MLS) (P=2) with K=16. Fig- 
ure 10 plots the test statistics for the Kelly GLRT with 
K=512 and the N-PAMF (MLS)(P=2) with K=16. 
Table 1 shows \l>i and $2 for several values of K and P 
using the N-PAMF. Note that the N-PAMF with P=2 
and K=16 provides the best performance for this sce- 
nario. In this instance, large sample support does not 
result in improved performance due to training data 
nonhomogeneity. 

P *i (dB) *2 (dB) 
NAMF (K=512) 16.2 7.45 
Kelly GLRT (K=512) 16.71 8.03 
N-PAMF (K=512) 4 19.3 12.3 
N-PAMF (K=32) 3 22.1 14.7 
N-PAMF (K=16) 3 21.6 15.2 
N-PAMF (K=32) 2 21.8 11.3 
N-PAMF (K=16) 2 22.4 14.7 

Table 1: Values of $! and $2 for the N-PAMF(MLS), 
NAMF, and Kelly GLRT 
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Fig. 7.   Pfa versus threshold for the NAMF 
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Fig. 8.   Pfa versus threshold for the N-PAMF 
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N = 32 

Range Bjn Index 

Fig. 10.   Test Statistic versus Range 

VI. SUMMARY AND FUTURE RESEARCH 

In this paper, we have evaluated the performance of 
the N-PAMF, NAMF, and Kelly GLRT in compound- 
Gaussian clutter disturbance. The robust detection per- 
formance of these methods was shown over a wide range 
of clutter texture power variations (shape parameters) 
for K-distributed clutter processes. Performance of the 
N-PAMF was found to be close to the NMF. Next, the 
CFAR behavior was considered by observing the detec- 
tion threshold variations with respect to shape param- 
eter. Additionally, we demonstrate the robustness of 
the N-PAMF method with respect to small sample sup- 
port size K (secondary data cells) used to estimate the 
disturbance correlation. This property is significant in 
operational scenarios involving range varying nonsta- 
tionary clutter which severely limits the availability of 
representative training data. Examples with real data 
illustrate the potential for considerable performance im- 
provement of the N-PAMF over the NAMF and Kelly 
GLRT. 
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ABSTRACT 

Surface-wave over-the-horizon radars, especially ones located in 
tropical areas, such as Northern Australia, are usually strongly af- 
fected by external impulsive noise. Apart from thunderstorm activ- 
ity, man-made (industrial) noise over typically quite long coherent- 
integration time often is of impulsive nature as well. 

In this paper we analyse the efficiency of temporal and spatial 
adaptive techniques for impulsive noise mitigation. We demon- 
strate that for heavily contaminated dwells, new spatio-temporal 
adaptive processing is most effective. Initial impulsive noise mit- 
igation, produced by adaptive spatial processing is used for range 
and azimuth dependent sea-clutter spectrum estimation. Estimated 
sea-clutter spectrum is then used to "restore" the "missing" data, 
originally contaminated by impulsive noise. 

1. DESCRIPTION AND ANALYSIS OF MITIGATION 
TECHNIQUES 

The High r-requencv Over-the-Horizon Radar (HF OTHR) proba- 
bly constitutes the most prominent example of radars subjected to 
severe impulsive noise interference. Tropical thunderstorms which 
are extremeK active in equatorial regions such as Northern Aus- 
tralia, typical l> generatr a significant number of lightning strikes 
within the operational range of HF OTHR due to relatively long 
coherent processing intervals In [2] based on experimental data 
collected in Northern Australia, we introduced point process mod- 
els for atmospheric noise adequate to spatial and temporal adap- 
tive impulsive noise miugauon It has been suggested that optimal 
mitigation technique should incorporate both spatial and temporal 
domains based on the properties of particular lightning strike. 

Our recent experimental tnal conducted from May to Septem- 
ber 2000 in Northern Australia revealed that accidental human- 
made noise thai quite often interferes with a HF radar, is in most 
cases also highly nonstationary. The atmospheric strike typically 
occupies a single repetition period or at most a few consecutive 
repetition periods (for high air-mode waveform repetition frequen- 
cies WRF=40 - 60 Hz), man-made impulsive interference typically 
occupies significantly longer intervals, measured in dozens of rep- 
etition periods (sweeps). Typical examples of atmospheric and 
man-made impulsive noise are presented in Fig. 1, 2. The am- 
plitude of the range processed data at the output of one particular 
beam are shown for different ranges (y-axis) as a function of repe- 

tition period (x-axis). One can see significant difference in number 
of sweeps contaminated by atmospheric and man-made impulsive 
noise. Another important feature demonstrated by these figures is 
the availability of "sea clutter-free ranges". These ranges allow 
for straight-forward identification of sweeps affected by impulsive 
noise. 

Obviously, analysis of impulsive noise mitigation efficiency 
should be expanded to man-made interference. Indeed, since only 
up to 30% of entire dwell is typically corrupted, there is a reason 
to compare spatial techniques with temporal ones[l]. 

In this paper we introduce comparative analysis of different 
temporal and spatial adaptive techniques, suitable for impulsive 
noise mitigation. 

Since the actual interval corrupted by impulsive noise is easily 
identified, temporal techniques are focused on a proper estima- 
tion of the missing sea-clutter data. For surface-wave radars with 
typically very high sub-clutter visibility that can range far above 
60 dB, an accurate estimation can become a problem. 

To address this problem two major approaches could be adopted. 
The first one is based on classical Weiner prediction filter. Compli- 
cated nature and range/azimuth variability of sea-clutter Doppler 
spectrum impose limitations on the actual accuracy of this ap- 
proach. 

The second technique is based on direct optimization of re- 
placement data to minimize the total power within the specified 
range of Doppler frequencies which are expected to be free of sea 
clutter. This technique has a different limitations, especially when 
the number of missing data is quite large and consecutive. How- 
ever, in attempt to minimize the overall power, strong targets could 
be suppressed and some important features of the sea-clutter spec- 
trum could be significantly damaged. Spatial techniques are effec- 
tive when strong impulsive interference impinges on a beampat- 
tern sidelobes. Meantime, when the entire coverage is important, 
there would always exist directions corrupted by impulsive noise 
propagated via the main beam. 

Comparative analysis of the above mentioned techniques was 
done firstly on uncorrupted SW OTHR data with subclutter visi- 
bility close to the limit. One selected example is shown in Fig. 
3. A certain number of sweeps has been nominated as being "cor- 
rupted" and two abovementioned temporal techniques have been 
used to restore the "missing" data. 

In order to apply the classic prediction (interpolation) approach, 
we first estimated the sea-clutter temporal covariance matrix. With 
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N = 1000 repetition periods typically used in ship mode, we se- 
lected M < N/2,M = 400 as a dimension of prediction/interpolation 
filter in expectation that whatever the actual number of missing 
repetition periods is, there still should be a sufficient number of 
uncorrupted repetition periods (sweeps) within corresponding M- 
variate "sliding window" of our prediction filter. The M-variate 
(range-dependent) sea-clutter covariance matrix is estimated here 
by forward-backward averaging: 

W-M+l 

Sä= Yl {Xi{xi)H+Jxdixrj) 
j=i 

where 

-0,   ...    ,1" 

J = 

1,    ... 

(1) 

(2) 

(3) 

and xd is the complex number that corresponds to j-th repe- 
tition period and d-th range cell. Particular beam number is not 
essential for this temporal processing. 

Let us introduce an M x (M - m) variate incidence matrix 
Hm that is constructed as standard identity matrix with m deleted 
rows at positions that correspond to the "missing" sweeps. Then 
the adaptive prediction filter that generates an estimate of the k-th 
missing data is defined as 

WZ= \HmRdH» ^mfi, * = 1, (4) 

where rd is k-th column of the M-variate matrix Rd. 
Correspondingly, the estimate x%, 

missing sweep is defined as 
k = 1, ...,mofthk-th 

xd
k = WlHHlXd,   Jfc = l,...,m (5) 

Our second approach is based on direct search for the m-variate 
vector Xm for "missing" data that with respect to the remaining 
(N — m) "valid" data results in the minimal total power within 
some designated range of Doppler frequencies. 

Specifically let us present the overall N-variate vector Xd as 

X" = XS + A„ (6) 

here X0 is a N-variate vector with zeroes the positions of "miss- 
ing" data, Am is N x m-variate incidence matrix, where rows of 
the m-variate matrix are "spread" over N rows, corresponding to 
the positions of the missing data. 

Weighted Discrete Fourier Transform (DFT) over the vector 
Xd could be presented as 

F£>(X0
d + Am£m) (7) 

and with (N - n) x N selection matrix S, the (N - m)-variate 
vector of selected Doppler bins within the d-th range Doppler spec- 
trum could be presented as 

SFD(X$ + Amxm) (8) 

where F is the N-variate DFT matrix, D is a diagonal weighting 
matrix (e.g. Blackman window). 

Finally, the overall power within this Doppler window could 
be presented as 

XlnDFHSSTFDXt + xS,AmDFHSSTDAmxm +     (9) 

crxml&DFH SST FDX£ + XdH DFHSST FDAmxm.  (10) 

Correspondingly the optimum solution is 

£m = -[f£DFHSSTFDbm]-,A£DFHSSTDXl    (11) 

(For rank deficient matrix [AmDFHSSTFDAm] this solution is 
modified to operate on signal subspace of this matrix.) Now these 
techniques could be compared. Fig 4 presents the Doppler spectra 
for TO = 100 of "missing" data for one range cut. Both random 
(atmospheric like) and continuous (man-made like) distributions 
of "missing" data within the 400 sweeps long window have been 
analysed. Different number of missing sweeps have been analysed, 
TO = 1,40,60,100, however only m = 100 continuous case pro- 
cessed with optimization filter is shown (the only one which shows 
any difference from the original). 

The results demonstrate that for randomly distributed "miss- 
ing" data both techniques provide equally good restoration. The 
prediction errors are equally small and sub-clutter visibility is re- 
stored to the original level in this case. However in the case of 
continuous "missing" data both methods work equally well only 
for a small number of "missing" sweeps. For increased number of 
consecutive missing data the difference between these two tech- 
niques becomes more significant. While classical prediction is 
still efficiently restoring missing data (up to 100 of missing data 
for 400-variate prediction filter), optimization (11) generates esti- 
mates Xm significantly different from the true missing ones. These 
estimates lead to reduction in overall noise power within the spec- 
ified Doppler area, but the overall structure of the Doppler spec- 
trum changes significantly. For most practical applications these 
changes could not be tolerated. Moreover, with significant num- 
ber of "degrees of freedom", total power minimization could con- 
siderably reduce the target signal as well. Thus, for a randomly 
distributed missing data or small number of consecutive missing 
data (up to 20 consecutive sweeps) the optimization technique (11) 
could be recommended as a preferred option since it does not in- 
volve (adaptive) sea-clutter spectrum estimation. For typical man- 
made impulsive interferences, this approach is not appropriate and 
attention should be attracted to a practical implementation of adap- 
tive prediction technique (4)-(5). Main problem here is to get 
an accurate enough estimate for the sea clutter covariance matrix 
Rd- Since the dimension of this matrix (prediction filter) should 
be significantly greater than the number of missing sweeps - real 
(corrupted) data should not be used directly for sample matrix es- 
timation (1) in the way it has been done in our previous study 
with uncorrupted data. Since all ranges are usually equally cor- 
rupted by impulsive noise, spatial diversity could be explored to 
assist sea-clutter covariance matrix estimation. Indeed, in most 
cases truly dominant impulsive noise sources are well localized 
and even with conventional beamformer it is usually possible to 
find the least contaminated direction (beam). While Fig 2 displays 
the range map for the most occupied beam, the top line in Hg 6 
demonstrates distribution of this impulsive noise power-to-noise 
ratio across the beams. It is quite obvious, that in the "minimal" 
beam (N=7) the power of this noise is significantly smaller and 
range processed data of this beam could be used for covariance 
matrix estimation. Obviously, adaptive spatial processing is even 
more effective in terms of reduction of antenna pattern sidelobes 
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affected by impulsive noise. The bottom line in Fig 6 presents the 
similar impulsive noise to white noise ratio as a function of beam 
direction for spatial adaptive processing (SAP). Here sea clutter- 
free ranges are used to estimate sample spatial covariance matrix 

R, Ey«p yapH 

where 

d,i& 

(32) -.T 

(12) 

(13) 

9 is the sea-clutter free ranges area and SAP beamformer is defined 
as usual by 

WSAP{1) = 
SfRelSl 

(14) 

with Si as a 32-variate steering vector. 
The most important issue that needs to be addressed to jus- 

tify this approach is sensitivity of this technique with respect to 
sea-clutter azimuthal variability. Indeed, we are prepared to use 
the sea clutter training data collected at the output of one particu- 
lar (adaptive) beam, but apply it to quite a different (conventional) 
beamformer output In order to investigate the efficiency of such 
technique, we analysed our "clean" data with nominated "missing" 
data. For Weiner prediction filter there is no visible difference for 
one range-doppler cut between the original data and restored ones 
even for quite large number of missing data (m=100), regardless 
of the fact if the data are random or consecutive. For the opti- 
mization filter the same can be said for random distribution of the 
replaced sweeps. However the same cannot be said for consecu- 
tive sweeps as the inverted matrix becomes ill conditioned. The 
Fig 4 demostrates, there is some degradation of the signal in the 
"sea clutter" area. 

Finally we illustrate the practical efficiency of our approach 
buy processing the real contaminated data shown in Fig 1,2. 

For the data shown in Fig 1 optimization technique (11) should 
be appropriate since only one dominant "strike" is recorded here. 

The results of this technique applied to one beam Fig 5 demon- 
strate quite impressive improvement in sub-clutter visibility. Par- 
ticular range profile shown in Fig 7 demonstrates 35 dB improve- 
ment in sub-clutter visibility, while the standard SAP has delivered 
only mere 8-10 dB. 

Our second example deals with the man-made impulsive noise, 
as per Fig 2. While SAP is practically not effective for the data 
collected at the direction of impulsive noise arrival (beam 4) it 
provides quite reasonable improvement for beam 7 data that thus 
could be used as training one. The above described approach with 
adaptive prediction filter "trained" on beam 7 data and applied to 
beam four data is illustrated by Fig 8. The particular range pro- 
file demonstrates improvement in sub-clutter visibility up to 20 
dB. Note that quite significant part of coherent processing interval 
(CPI) has been contaminated here. Interestingly enough, when the 
same prediction filter is applied to the training data of the beam 
7 (Fig 9), still considerable additional improvement with respect 
to the SAP processing has been obtained. The reason behind be- 
comes clear when sea clutter free ranges processed by SAP are 
analysed: impulsive noise residues are still some 10 dB above the 
ambient noise floor. Therefore the replacement of these corrupted 
repetition intervals by predicted ones results in additional improve- 
ment in sub-clutter visibility. 

2. CONCLUSION 

Analysis of selected temporal and spatial adaptive techniques for 
atmospheric and man-made impulsive noise mitigation for SW 
OTHR has been performed. It has been demonstrated that tem- 
poral or spatial only processing could be effective only in special 
cases. For contaminated repetition periods which are randomly 
distributed over CPI, direct optimization method is shown to be 
very effective. For some beam directions affected by impulsive 
noise via antenna pattern sidelobes, standard spatial adaptive pro- 
cessing could be also quite effective on its own. In more general 
case, when the number of contaminated sweeps is quite signifi- 
cant and consecutive (man-made impulsive noise), and impulsive 
noise must be rejected in all directions, proposed spatio-temporal 
adaptive processing is shown to be most effective. Here spatial 
(adaptive) processing is used for initial impulsive noise mitiga- 
tion, and the beam where this reduction is maximal is used as a 
training one for sea-clutter (temporal) covariance matrix estima- 
tion. Adaptive Weiner filter trained by the spatially processed data 
is then applied to contaminated (conventionally) beamformed data 
with similar energetic content of Doppler spectra. 
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Figure 1: Atmospheric impulsive noise, beam 1. 

Figure 2: Man-made impulsive noise, beam 4. 
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Figure 3: "Clean" data used for comparison. 
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Figure 4: Comparison of original data and optimization filter with 100 consecutive sweeps replaced. 
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Figure 5: Comparison of conventional, SAP and optimization beamformer. 
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Figure 6: Power distribution accross beams, top convetional beamformer, bottom SAP. 

Figure 7: One range cross section, top-original,middle-SAP,bottom-optimization 
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Figure 8: Weiner prediction filter trained on beam 7, used on beam 4. 

Figure 9: Weiner prediction filter trainde on beam 7, used on beam 7 top line - SAP bottom line - Weiner prediction filter. 
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ABSTRACT 
Broadband processing is an important part of the 

Navy's current and future SONAR systems. This paper 
provides an introduction to a new class of passive 
broadband processing algorithms, Subband Energy 
Detection (SED), which includes both Subband Peak 
Energy Detection (SPED) and Subband Extrema Energy 
Detection (SEED). It will be shown that SED has several 
performance advantages over Conventional Energy 
Detection (CED), also known as Linear Rectify (LR). 

SED exploits the spatial coherence of the signal's 
local maxima ("peaks") and minima ("valleys") compared to 
the randomness of noise to increase the quality of the 
broadband processing display. Instead of summing the 
energy in each single beam over the frequency band, SED 
sums the energy of the peaks and valleys in the azimuth 
spectrum for each frequency bin. 

The objective of this paper is to examine the 
theory, advantages, and limitations of Subband Energy 
Detection. In doing so, we will first give an overview of 
broadband processing and discuss energy detection 
theory. We will then describe the theory of both CED and 
SED. Processed data from both sets of algorithms will then 
be analyzed to uncover the relative advantages and 
disadvantages of each method. 

INTRODUCTION 
For 

beamformer 
a single time scan, the output of the 

is a 2dimensional matrix in frequency and 
azimuth known as a FRAZ (FRequency AZimuth). A 2- 
dimensional FRAZ cell contains a measurement of the 
energy for each azimuthal and frequency bin. A typical 

example FRAZ is shown in Fig. la. Broadband processing 
methods collapse the FRAZ over frequency to a single 
dimension, azimuth. The result is a bearing-time record 
(BTR) display, Fig. lb, which allows the operators to detect 
contacts and provides a high level of situational 
awareness. 

In the past, broadband detection methods such as 
CED and cross-correlation (CC) have provided this critical 
function while attempting to maximize the operator's 
detection ability. Recently, a new class of broadband 
detection methods, Subband Energy Detection (SED), has 
been developed and has emerged as an accepted 
alternative [1]. 

2. ENERGY DETECTION 

The goal of energy detection methods is to create 
an estimate of the probability of detection of an acoustic 
source at a given time and location. This requires the 
reduction of the beamformer output, which is a function of 
time, azimuth, and frequency into the time-azimuth plane. 
As a result, both CED and SED collapse the beamformer 
output over frequency but each takes a different approach. 

2.1 Acoustic Environment 
The ocean acoustic environment consists of 

acoustic energy from both contact signals and random 
noise. This noise field is the result of a large number of 
factors such as wave action, seismic events, marine life, 
and distant shipping activity. 

Since this noise field is a collection of sources, it 
also has a certain level of directionality associated with it 
The attenuation factor for acoustic waves is also larger for 
higher frequencies. The result is a noise field dominated in 
power by low frequency spectral content and significantly 
less high frequency content. 

Research funding provided by the Undersea Warfare Division of the Advanced Systems Technology Office. 
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Figure 1: Broadband Processing Methodology (A) FRAZ- FRequency Azimuth plot for a single time scan, (B) BTR- 
Bearing Time Record Display that is the final broadband display. 

2.2 Normalization 
Due to the nature of the noise field, energy 

detection methods typically utilize a noise floor estimate. 
This is done since signal to noise ratio (SNR) is used as the 
energy value. It has been shown that the use of SNR 
versus raw signal typically increases the performance of 
the algorithm. Simply summing the raw energy in each 
frequency bin ignores the fact that low frequencies 
dominate the energy distribution. Doing so may prevent 
the detection of primarily high frequency contacts. 

Energy detection methods with noise floor 
estimation have demonstrated good detection capability 
including the detection of low SNR contacts (i.e. signals 
quieter than the average noise floor) [2]. In part, this 
detection capability benefits from two primary concepts: 
spatial coherence and sidelobe rejection. 

2.3 Energy Detection Concepts 
Spatial coherence is defined as the alignment of 

distinct frequency components of a contact signal. Since 
the frequency components spatially align, they strengthen 
the energy estimate and increase the detectability of 
contact sgnals over random noise. 

Energy detection methods also provide inherent 
sidelobe rejection. The reason for this is related to the 
beamforming process. Beamforming spatially filters the 
elemental array timeseries. Ideally, there is a unity gain in 
the look direction and a zero gain in all others. Realistically, 
the array gain pattern, or beam pattern includes a mainlobe 
of a certain width and several sidelobes which allow noise 
and interferer energy to leak into the beam measurement. 

At high frequencies, the beam pattern has a 
narrow mainlobe and many narrow sidelobes. As the 
frequency is reduced, the lobe width increases and the 
location of the sidelobe peaks shift in azimuth. The result is 
that for a single beam measurement, the mainlobe peaks 
line up in tie same azimuth bin for all frequencies while 
sidelobe peaks spatially shift and will not line up over the 
frequency range. This mitigates the effect of sidelobe 
energy leakage. 

3. CONVENTIONAL ED 

Conventional Energy Detection (CED), also 
known as Linear Rectify (LR), is a traditional energy 
detection method. CED will be utilized as a baseline for 
evaluating Subband Energy Detection (SED) performance. 

3.1 CED Principles of Operation 
CED starts with a FRAZ for a single time scan and 

processes each azimuth bin, Fig 2a. A single azimuth bin 
contains a frequency spectrum of signal plus noise, as 
seen in Fig. 2b. As mentioned above, the next step is to 
perform a noise estimate. The method used by CED for 
estimating the noise floor applies a median filter in 
frequency and azimuth. 

CED then calculates the signal to noise ratio 
(SNR) by dividing the beamformer output (signal plus 
noise), Fig. 2b, by the noise floor estimate, Fig 2c. Finally, it 
calculates an energy estimate by summing the SNR values 
in all desired frequency bins for the single azimuth bin. 
This process is repeated for each azimuth bin and 
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Figure 2: Conventional Energy Detection (A) FRAZ display with arrow showing a single azimuth bin, (B) Frequency 
spectrum of the measured signal plus noise for a single azimuth bin, (C) Frequency spectrum of the normalized noise 
estimate. 

every time scan to produce a BTR display which is used to 
detect acoustic contacts. 

3.2 CED Performance 
CED has been shown to provide optimal single 

signal detection in uncorrelated noise fields. The 
theoretical minimum detectable level (MDL) of CED for this 
case is better than that of the SED algorithms presented 
next. As such, CED provides raw optimum detection ability 
for isolated signals. 

There is, however, one major limitation of CED. 
CED produces wider contact traces due to the limited 
bearing resolution. As a result, CED is not optimal for real 
world acoustic environments with multiple signals. This 
produces BTR displays with wide, blurry traces for loud 
contacts. 

The detection ability of the system for cluttered, 
real world acoustic noise environments is impaired since 
the wide, blurry traces may suppress nearby, quieter 
contacts. So, despite the theoretical MDL advantage of 
CED for isolated signals, SED has an overall detection 
advantage in clutter due to the increased bearing 
resolution and narrower contact traces. This can be seen in 
the results in Fig. 5 and will be discussed further later. 

4. SUBBAND ED 

Subband Energy Detection (SED) is a new class of 
energy detection methods. These algorithms have gained 
acceptance and are currently used in real world SONAR 
systems. 

4.1 SED Principles of Operation 
SED starts with the same FRAZ information as 

CED. However, instead of looking at the frequency 
spectrum in a single beam, SED looks at the azimuth 
spectrum for a single frequency bin, Fig 3a. SED finds the 
locations of all "peaks" and "valleys" in the azimuth 
spectrum for each frequency bin. An example azimuth 
spectrum is seen in Fig. 3b. A peak B simply a local 
maximum in azimuth and a valley is a local minimum in 
azimuth These peaks and valleys are then used to generate 
an energy estimate using one of several algorithms. Fig. 4 
shows BTRs for a real acoustic data set processed by each 
of the four primary SED algorithms. 

4.2 SPED and SEED 
There are two fundamental classes of Subband ED 

algorithms: Subband Peak Energy Detection (SPED) and 
Subband Extrema Energy Detection (SEED). In addition, 
each class has at least one version from two modes: Clutter 
Suppress (CS) and Energy Detection (ED). 

SPED utilizes only the peak information to 
estimate the detection probability. It examines the azimuth 
spectrum for every frequency bin and locates the peaks. 
For each azimuth bin containing a peak, a value, or 
"reward", will be added to the energy estimate for that 
azimuth bin. The actual value of the reward will depend on 
the mode of the algorithm (i.e. CS or ED). This is repeated 
for each frequency bin. 

Unlike with CED processing, if the bin does not 
contain a peak then SPED will not add to the energy 
estimate for that azimuth. In other words, SPED sums only 
the energy at the peaks. 
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Figure 3: Subband Energy Detection (A) FRAZ display with arrow showing a single frequency bin, (B) Azimuth spectrum 
of a single frequency bin showing the signal peaks and the noise floor. 

Subband Extrema Energy Detection utilizes both 
peak and valley information to estimate the detection 
probability. Like SPED, it will add a reward for peaks. In 
addition, it will also subtract a value, or assess a "penalty" 
for any valley that is located in an azimuth bin. 

43 CS and ED Modes 
The clutter suppress mode (CS) assigns a reward 

and penalty of unity for each peak and valley. This mode 
can be thought of as a histogram and basically counts the 
number of peaks (and, in the case of SEED, subtracts the 
number of valleys). It does not attempt to account for the 
magnitudes of these peaks and valleys. As a result, the CS 
mode does not require noise floor estimation. This method 
works well with broadband contacts but poorly with 
contacts containing only a few loud frequency 
components. 

The energy detect mode assigns a reward and 
penalty based on signal to noise ratio. This requires the 
calculation of a noise estimate. The reward is simply the 
measured beam noise (signal plus noise) divided by the 
noise estimate. The penalty calculation is less 
straightforward and is an area of current research [3,4,5]. 

The noise estimate typically used is a complex 
algorithm that averages over time, clips tonals, applies a 
smoothing filter, and then takes the quiet value in an 
azimuth sector as the noise floor. 

4.4 SED Theory 
Peaks and valleys occur due to both contact 

signals and random noise. Even when the average noise 
floor is greater than the contact, the fluctuations of the 

noise may cause it to drop below the contact signal. When 
this happens, there is a peak due to the contact signal. 

In one frequency bin of the beam noise versus 
azimuth spectrum, there may be several peaks due to the 
signal but still many more due to noise. Although noise 
peaks outnumber signal peaks, low SNR contacts may still 
be detected because peaks due to contact signals will have 
spatial coherence (i.e. occur in the same azimuth bin for 
each frequency) while noise peaks will not. As a result, 
these signal peaks add "constructively" when summed 
over the entire range of frequency bins. 

SED is often referred to as a "peak-picking" 
method. Instead of summing the energy in every frequency 
bin, SED sums only the energy values for the bins that 
contain extrema. In effect, this detects only the peak of the 
mainlobe, reduces the width of the contact traces, and 
provides increased spatial resolution of the BTR display. 
This serves to provide SED with a detection advantage 
over CED in cluttered environments since quiet contacts 
are no longer hidden by nearby louder ones. 

5. RESULTS 
Fig. 5 shows four acoustic data sets processed by 

both CED and SEED CS. The first example (on the left) 
shows comparable detection ability. Despite the better 
theoretical MDL of CED for isolated targets, this and most 
other real data sets show no appreciable difference in 
detection ability. 

The peak-picking provides SEED CS with sharper, 
more clearly defined contact traces as can be seen 
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SPEDCS SEED CS SPED ED SEEDED 

Figure 4: BTR displays for a real acoustic data set processed by several Subband ED algorithms (A) SPED CS, (B) SEED 
CS, (Q SPED ED, (D) SEED ED 

Figure 5: BTR displays for Conventional ED (top row) and Subband Extrema Energy Detection- Clutter Suppress Mode, 
SEED CS, (bottom row) for four real acoustic data sets. 

29 



in the second example from the left. This reduces the 
'blacked out' areas resulting from loud contacts. In this 
example, the increased spatial resolution does not improve 
performance substantially since both grams contain all 
traces. 

In the third example from the left, which shows a 
cluttered environment, the increased spatial resolution 
does provide a significant detection advantage. Traces 
that are blurred together in the CED gram can clearly be 
seen in the SEED CS gram. 

The final example again shows the detection 
advantage of SED in cluttered noise environments. It also 
shows comparable detection performance for the contact of 
interest, the high bearing rate trace at the bottom. 

6. SUMMARY 

This paper has compared the theory and results of 
both Conventional Energy Detection and Subband Energy 
Detection. The results have shown that SED provides 
narrower contact traces and increased bearing resolution 
since only the energy of the peaks and valleys are summed. 
There is also reduced smearing of acoustic energy over 
large azimuths and an improved ability to detect nearby 
contacts. Additionally, despite a lower theoretical MDL for 
isolated signals, SED displays a significant detection 
advantage in real world (cluttered) acoustic environments. 
The overall conclusion is that Subband Energy Detection 
is an important broadband processing method that 
provides increased performance to Navy SONAR systems. 
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1. INTRODUCTION 

Detection of a signal embedded in interference is a common 
problem encountered in radar, sonar and communication 
systems. In cases where it is known that the interference 
is low rank (or approximately so) the amount of data re- 
quired for adaptation can be reduced by using reduced rank 
estimation methods. Three proposed methods for making 
the selection of basis vectors are the Cross Spectral Met- 
ric (CSM) [1] method, the Principal Components Inverse 
(PCI) [2] method and Multistage Wiener Filter (MWF) [3]. 
The examination here is for detection of a signal that may or 
may not be present within a given set of data. That is, train- 
ing and signal detection must be performed using the same 
data set. The case of independent training and test data has 
been treated in [4,5]. 

2. ADAPTIVE CSM, MWF AND PCI 

The methods of CSM, PCI and the MWF offer differing 
ways of providing an adaptive processor in the signal based 
coordinates, 

\SHX-WgSLC(BHX)\ 0) 
where S is orthogonal to the columns of B. Referring to 
Figure 1, given a set of K data vector samples, form a 1 x K 
vectord=[di dk ■■■ d,K ] and a N — 1 x K matrix 
Z = [ Zi Z2 • - • ZK ] = t±VH from the data in 
the signal and orthogonal space respectively. Subsequently, 
we will use the " symbol to denote estimation from data. 
For example, Hz is the the covariance matrix of the vector 
Zfc and Rz is an estimate of R^ using a finite number of 
vector samples. 

Adaptive versions of CSM, PCI and the MWF can be 
constructed by using covariance and cross-covariance esti- 
mates. 

RZ = iZZff       fiz = iZd* 

For CSM and PCI the weight vector is formed as 

WGSLC = ÜpE;2Üf fit 

(2) 

(3) 

using the p singular vectors and values selected by the given 
method. Adaptive CSM uses the estimated cross spectral 
metric; whereas, PCI uses only the estimated singular val- 
ues to determine which singular vectors are kept The MWF 
uses the estimated quantities in place of the known quan- 
tities in the construction of the multistage decomposition. 
It should be noted that the philosophy in the development 
of these methods have differences. CSM and MWF were 
formulated as a rank reduction for a prescribed rank and 
general covariance; whereas, PCI was developed with the 
assumption that the covariance is from a low rank process 
and the rank is estimated from data over the adaptation in- 
terval [6]. 

3. TRAIN AND TEST ON SAME DATA 

Often the scenario is such that the calculation and applica- 
tion of the weight vector is to be performed on the same 
data set. In this case, with no signal present, CSM has 
been shown to be the optimal method with respect to mean 
square error for the selection of singular vectors, and an up- 
per bound to the performance of PCI. Consider, the assump- 
tion that the interference has a correct rank such that CSM 
and PCI should nominally choose the same singular vectors. 
Suppose the realization of data has a swap [4] in the singu- 
lar vectors chosen by CSM. Then CSM will choose a set 
of singular vectors which may not be best for the entire set 
of all possible realizations, but that doesn't matter since the 
weight vector will only be used on this realization. PCI on 
the other hand chooses singular vectors which should work 
best on all possible realizations and thus does not perform 
as well as CSM on this particular realization. That is, the 
reasoning that allows PCI to outperform CSM in the inde- 
pendent data case is the reason that it is poorer in the same 
data case with respect to mean square error. 

3.1. Toy Example 

Let us construct a simple concrete example which can be 
used to highlight the characteristics of each method. As- 
sume a five element array with four sample snapshots and 
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two jammers. Without loss of generality assume that the 
beams of the orthogonal space are chosen to be the eigenco- 
ordinates. Choose an equal power of 1000 for the jammers 
and let the signal channel be given as dk = 0.01ZljA + 
0.1Z2,fc + 0Z3>i + 0Z4jfc. Suppose the data with only jam- 
ming (no signal or background noise) is 

d   =    [ -90   90   110 -110 

1000 -1000 1000 -1000 
-1000  1000 1000 -1000 

0    0 0    0 
0    0 0    0 

The cross covariance of this data is 

rdZ = [ 10000   100000   0   0 f 

and the cross correlation is given by 

Pdz=[ 0.0995   0.9950   0   0 ]T 

(4) 

(5) 

(6) 

(7) 

Clearly all three methods will choose identical subspaces 
and thus have identical performance. Let us now include 
the effects of background noise, N, in the orthogonal beams 
such that Z + N is now given as 

Z + N = 

1000.3 -999.2 1001     -1002 
-998 1001 1002 -1000.2 
-1 -0.5 0.5          1 
0.5 0.2 0.1       -0.5 

(8) 

The cross covariance for this situation has now become 

raz = [ 10094   100038   -2.5   0.75 ]T 

and the cross correlation has changed to 

(9) 

Pdz = [ 0.1004   0.9951   -0.0315   0.0201 ]T   (10) 

The addition of the background noise has caused some per- 
turbation but not sufficient to cause PCI and CSM to dis- 
agree on the singular vector selection. The first MWF basis 
vector will also have a negligible change since 10094 » 
2.5. Let us now introduce a signal level of 100 in the first 
snapshot such that the signal channel data is given by 

d= [ 10   90   110   -110 ] (11) 

The cross covariance has now changed to 

rdz = [ 35101    75088   -27.5   13.25 ]T       (12) 

and the cross correlation has changed to 

Pdz = [ 0.3898   0.8341   -0.3865   0.3970 ]T   (13) 

Recall that the PCI choice of subspace is only determined 
by the power of each eigenchannel and so is unaffected by 

the presence of signal. Although the values of the cross co- 
variance have changed quite a bit, the first two channels are 
still the dominant values and the two dimensional subspace 
chosen by the MWF will only slightly be affected. CSM on 
the other hand has undergone a change in its choice of sub- 
space due to perturbations in the correlation as a result of the 
signal presence. CSM will now choose channels 2 and 4 as 
opposed to 1 and 2. Thus one would now expect decreased 
jammer suppression as well as increased signal cancellation. 
The fact that the MWF uses the cross covariance, which is a 
combination of power and correlation makes it less succep- 
tible to perturbation by introduction of signal in a jamming 
environment. 

Consider now the cases when the estimation of the rank 
is greater than the true rank. The PCI method will choose 
basis vectors which contain residual power due to errors in 
the estimation of the true interference subspace but will be 
unaffected by the presence of signal. The CSM method will 
continue to choose singular vectors based on the signal per- 
turbed values of the cross correlation. Once the interference 
is essentially canceled, CSM is choosing the singular vec- 
tor for which the noise can best be used to cancel signal 
and thus will suffer a loss of performance. For the MWF, 
the subspace selection for ranks at or below the interference 
rank provides good subspace estimation although some per- 
turbation due to signal presence does exist. However, the 
strength of the interference in the well estimated subspace 
will dominate the calculation of the weight for that stage. 
Once the interference has been suppressed, the MWF will 
then construct the next basis vector from the residual noise 
in an attempt to cancel out the signal channel. Unlike CSM 
which can only choose between singular vectors based upon 
correlation, the MWF utilizes correlation in the construction 
of the basis vector. The MWF will therefore suffer signifi- 
cant signal cancellation once the rank is overestimated. 

3.2. Single Jammer Simulation 

Simulations for the same training and test data were run us- 
ing a signal plus noise to average noise criteria. The signal 
used was a single snapshot, random phase signal at broad- 
side to the array. Placing the signal only in a single snapshot 
is done without loss of generality since it does not statisti- 
cally change the SVD or cross covariance and cross corre- 
lation estimates. 

A set of 16 signal free snapshots was created and fil- 
tered using the PCI, CSM and MWF methods followed by 
matched filtering in time with a squaring of the output. The 
signal was then added to this set of snapshots and the filter- 
ing process was repeated on the signal plus noise data. The 
ratio MEANINOZT) 

was comPuted for each method. The 
first set of simulations is performed with only one jamming 
signal present near a null at 22 degrees and 20dB JNR as 
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shown in Figure 2. 
The results for PCI and CSM are plotted as scatter plots 

for varying levels of input SNR in Figure 7. Each dot repre- 
sents an X-Y plot of the results of two methods to an identi- 
cal input. The upper left Figure is for the case of no signal. 
The dots are scattered nearly symmetrically about the diag- 
onal with the two methods rarely producing the same result. 
There does appear a slight bias of the scattering towards 
PCI which one would expect since CSM provides the min- 
imum mean squared error. Since the jammer level is 20dB, 
the PCI choice of basis vector should be nearly constant. 
Therefore, the disagreement of the methods is a result of 
the varying CSM choice [4]. Again, from the perspective 
of mean squared error, the choices are optimum. In the plot 
at the top right, a signal at OdB is included in the data. An 
increase in the shift of the data to the PCI side of the diag- 
onal is evident. Increasing the signal level to 12dJ3 in the 
lower left, the vast majority of the disagreements between 

for (5+JV), PCI and CSM result in a higher output MEAN/N T 

the PCI method. When the signal level is raised to 24dB, 
as shown in the lower right plot, essentially all the disagree- 
ments of the two methods favors the PCI method. 

Scatter plots for PCI and the MWF are plotted in Fig- 
ure 12. For the cases of no signal and OdB signal (top left 
and top right respectively) the two methods produce sim- 
ilar results spread around the diagonal. Recall that since 
PCI and the MWF construct the basis vectors differently, the 
agreement along the diagonal would not be exact as in the 
case of PCI and CSM. When the signal level is increased to 
12dB and 24dB (bottom left and bottom right respectively) 
a slight advantage for the PCI method is created. 

In Figure 13 the mean ( MBAN(N) ) *s Plotted as a func- 
tion of the signal strength for each method. The three meth- 
ods are nearly identical at the —6dB signal level but the 
CSM method begins to show a drop in performance relative 
to PCI and MWF for signals beginning at OdB. The differ- 
ence in the methods holds nearly constant as the signal level 
is increased past 6dB. The MWF method is slightly below 
the PCI for larger signal levels although it is difficult to see 
on the plot. 

Let us now examine the performance as a function of 
rank in Figures 14 and 15. As described earlier, the perfor- 
mance of the MWF drops significantly once the rank is over- 
estimated. The CSM method shows the performance loss 
for the correct rank and drops faster than the PCI method 
when the rank used is above the true rank. 

33. Multiple Jammers 

Now consider a five jammer scenario. The pictograph of the 
scenario is plotted in Figure 16. 

The scatter plots for PCI verses CSM are shown in Fig- 
ure 21. The plots resemble those of the single jammer case 

GENERALIZED SIDELOBE CANCELLER 

x.ro 

TRANSFORM TO 
MAIN & ORTHOSONAL 
BEAMSPACE 

Figure 1: Generalized Sidelobe Canceler Structure 

Figure 2: Single Jammer in Null at 20dB JNR 
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Figure 3: No Signal Figure 4: OdB Signal 

Figure 5: 12dB Signal Figure 6: 24dB Signal 
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Figure 8: No Signal Figure 9: OdB Signal 

Figure 10: 12dB Signal Figure 11: 24dB Signal 
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Figure 15: Performance as s Function of Rank for 24dB 
Signal with Single Jammer 
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Figure 13: Performance as a Function of Signal Level 
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Figure 16: Five Jammer Scenario 

Figure 14: Performance as s Function of Rank for OdB Sig- 
nal with Single Jammer 
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Figure 17: No Signal Figure 18: OdB Signal 

Figure 19: 12dB Signal Figure 20: 24dB Signal 

Figure 21: PCI Vs CSM „%%£.) 

Figure 22: No Signal Figure 23: OdB Signal 

Figure 24: 12dB Signal Figure 25: 24dB Signal 

Figure 26: PCI Vs MWF „g*fct) 

although the performance difference of the two methods has 
increased. In Figure 26, the scatter plots are shown for PCI 
verses the MWF. The performance difference between the 
two methods is now more noticeable for the higher signal 
level cases than was apparent with the single jammer. This 
results from the fact that the power levels in the last two or 
three basis vectors chosen by the MWF are not nearly as 
strong as the first two or three. 

The view of the performance of the five jammer scenario 
verses signal level is plotted in Figure 27. As before, the 
CSM method shows a performance loss even for low sig- 
nal levels. As the signal level is increased, the performance 
difference also increases as multiple errors in the choice of 
basis vectors occur. The MWF method agrees well with the 
PCI method up to a signal level of 6dB at which point the 
performance of the MWF begins to lag that of PCI. The per- 
formance degradation of the MWF grows as the signal level 
increased. 

Turning to the performance verses rank for a 0 dB sig- 
nal in Figure 28, one first notices that the performance of 
CSM and the MWF peaks at a rank of 4 as opposed to 5. 
Estimation of the 5th basis vector is corrupted by signal and 
better performance results from only using 4 basis vectors. 
As expected, performance for ranks below the number of 
jammers is significantly better for the MWF and CSM than 
the PCI method. However, once the rank is overestimated 
the performance of the MWF and CSM decrease rapidly for 
reasons discussed previously. The signal level is increased 
in Figure 29 to 24dB. Most notable in this plot is the rela- 
tively poor performance of the CSM method for all ranks. 

Avg S*N/N tor SampK Ste - IS. Rank - 5 moompcKU " 1 — pcl 1 

. 
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Figure 27: Performance as a Function of Signal Level with 
5 Jammers 
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Figure 28: Performance as s Function of Rank for OdB Sig- 
nal with 5 Jammers 
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Figure 29: Performance as s Function of Rank for 24dB 
Signal with 5 Jammers 
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Figure 30: Receiver Operating Characteristic for 12dB Sig- 
nal 

As a final way of looking at the performance of the 
methods, the Receiver Operating Characteristic (ROC) curves 
for a 12dB signal level are plotted in Figure 30. The curve 
was generated using 21S samples. The performance loss of 
both MWF and CSM is evident. 

Overall, the experiments validate the insights that were 
gained by examining our toy example. 

4. CONCLUSIONS 

The Cross Spectral Metric (CSM) and the Multistage Wiener 
Filter (MWF) are two recently introduced alternatives to the 
Principal Components Inverse (PCI) method of rank reduc- 
tion for adaptive detection. By gaining insight into the pa- 
rameters that each method utilizes and the estimation char- 
acteristics of those parameters, one can predict how each 
method will perform under differing scenarios. PCI selects 
basis vectors by use of an SVD and selects a subspace based 
upon singular values. The subspace of the SVD is stable un- 
der conditions of strong power. CSM selects basis vectors 
by use of an SVD but then selects a subset based upon cor- 
relation with the desired channel. Thus the basis vectors are 
chosen with respect to power but then a subset is selected by 

use of the cross spectral metric. Since singular vectors are 
not necessarily stable, even though a subspace is, CSM has 
difficulty since the metric depends upon the singular vec- 
tors rather than the entire subspace. The MWF forms and 
chooses basis vectors based upon the cross covariance with 
the desired channel which is a combination of power and 
correlation. By creating scenarios where the estimates of 
these parameters are similar to those obtained by the back- 
ground white noise, errors in the selection of the basis vec- 
tors can be made to occur. These errors are responsible for 
decreases in the detection performance of the methods. 
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Abstract - This paper investigates the optimization 
of both single and full polarization radar transmission 
waveforms to maximize target identification discrimina- 
tion. This theory is applied to the discrimination of the 
T-72 and Ml battle tanks based upon simulated target 
frequency response data. Significant performance im- 
provement in identification is obtained using an opti- 
mized transmission waveform over that of a standard 
chirped pulse. 

generated using the Fast Illinois Solver Code (FISC) that 
applies a method-of-moments technique to provide high fi- 
delity at relatively low radar frequencies. The specific VHF- 
band data generated by SAIC-Champaign cover frequencies 
between 225-375 MHz at an aspect interval of 2°. 

2   OPTIMIZED   SINGLE-POLARIZATION   TAR- 
GET IDENTIFICATION 

1   INTRODUCTION 

A number of researchers [1, 2, 3, 4, 5, 6, 7] have con- 
sidered the use of sophisticated pulse shaping techniques in 
order to maximize the radar energy reflected off of a non- 
point target. In particular, Grieve, Guerci, Pillai, Oh, and 
Youla, [1, 2, 3] have developed a general theory of opti- 
mized pulse shaping that maximizes the target SINR, in- 
cluding the effects of both generic colored noise and col- 
ored signal-dependent clutter. In addition, Guerci and Pillai 
[8,9] developed the theory of optimized pulse shaping for 
single-channel target identification discrimination via the 
use of techniques that are similar to that used for detection. 
This paper extends this target discrimination analyses in 
permitting multiple-channels, colored noise, and non-zero 
colored clutter. 

The present analysis applies the theory of optimized 
pulse shaping for target identification discrimination us- 
ing two simulated surface targets: the T-72 and Ml main 
battle tanks. SAIC-Champaign [10] generated the full- 
polarization VHF-band radar signatures for a single eleva- 
tion angle of 15° and the full spectrum 0° — 360° of aspect 
angles relative to the sensor. These VHF-band data were 

The derivation begins with the result that the maximiza- 
tion of the probability of correct classification between two 
target classes a and ß is equivalent [12, 13] to the maxi- 
mization of the square of the Mahalanobis distance 

V (ya-y^R-^ya-ytf) (1) 

between the two target echoes. Here, ya = qQf and 
Yß = qsf are real-valued vectors of length 2N — 1 giving 
the temporal samples of the echoes from targets a and ß, re- 
spectively. The real-valued vector f = [/o, /i,..., /JV-I]

T 

gives the temporal samples of the transmission pulse. The 
real-valued matrices qa and q^ are the convolution impulse 
responses for targets a and ß, respectively, having the form 

/   9o 
9i 

QN-I 
0 

V   0 

0 

9o 

9JV-2 

9JV-I 

0    \ 
0 

9o 
9i 

qN~i' 

(2) 
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The (2JV - 1) x (2AT - 1) Hermitian-Toeplitz matrix 

ro 

R = 

n 
ro 

T2N-2 \ 
r-iN-z 

(3) 

r2N-2     ~2JV-3 ro ) 

is the temporal autocorrelation of the noise plus clutter, with 
matrix coefficients 

re = ^f_ {Gn{u) + Gc(u)\F(u)\2}^du.     (4) 

Thus, T)2 can be expressed in the form 

v2 = f*nf, (5) 

with the matrix ft defined by 

« = (<k - q/3)HR--1(qa - us). (6) 

For the case of zero clutter Gc(w) = 0, the minimax theo- 
rem implies that the maximization of rj1 is obtained when 
the transmission pulse vector f is equal to the eigenvector 
of SI corresponding to the largest eigenvalue. 

For the case of non-zero clutter Gc(u) / 0, the au- 
tocorrelation matrix R depends upon the power spectrum 
\F(u) |2 of the transmission pulse vector f via Eqs. (3) and 
(4), so that an iterative procedure similar to that used for 
optimized target detection [2] must be applied, as described 
below: 

1) For the initialization k = 0, begin with any real causal 
temporal vector f0 of duration t0 and energy E0. 

2) Let ffc <-* Fk(u) and find the corresponding temporal 
autocorrelation matrix Rfc using Eqs. (3) and (4). 

3) Compute the Ofc matrix using Eq. (6) in terms of the 
autocorrelation matrix Rk and the target impulse re- 
sponse matrix q. 

4) Find the largest eigenvalue \[h) and corresponding 
normalized eigenvector v[k^ of the fifc matrix. 

5) Define the error at stage k by 

6fc = v/2^(v/^-ffv«), (7) 

and invoke the same update rule that is applied in Pillai 
and Guerci [2] 

ffc+i = 
ffc + «fcvj' («=) 

y- + vk)    [ik) 
(8) 

6) Let ffc+1 <-» Fk+i (w) and go back to Step 2 with k 
replaced by k + 1, and repeat until e^ is sufficiently 
small. Then the optimized transmission vector is 

f = lim ffc. 
k—*oo 

(9) 

Figure 1 gives the improvement in the square of the Ma- 
halanobis distance squared between the T-72 and the Ml at 
VHF-band resulting from the use of the optimized transmis- 
sion pulse over that of a standard chirped pulse. This figure 
shows two values of the CNR: 0 and 10. The improvement 
in the square of the Mahalanobis distance degrades as the 
CNR level is increased,, as occurs with the SINR improve- 
ment in the detection problem [2]. 

For the case of aspect uncertainty, it is necessary to com- 
pute the expected value of the square of the Mahalanobis 
distance, i.e., 

W= J d0 mv2(0) = jd6 £(0)f*n(0)f,      (10) 

with the density function £(0) characterizing the a prior 
likelihood of the target aspect 0. The matrix ß(0) now in- 
cludes aspect dependence, i.e., 

fi(0) = (wa(0) - w^(ö))HR-1(wQ(e) - wß(fl)). (11) 

Inserting Eq. (11) into Eq. (10) implies that 

tf = iHm. (12) 

can be expressed in terms of 

H= fd0Z(O)Cl(6). (13) 

Thus, optimization of the transmission waveform to maxi- 
mize identification performance under conditions of aspect 
uncertainty involves the computation of the weighted aver- 
age of O(0) matrices with respect to aspect. Furthermore, 
the iterative procedure described above for the case of non- 
zero clutter is modified only by the replacement of the fi 
matrix by its weighted average £2. 

3   OPTIMIZED FULL-POLARIZATION TARGET 
IDENTIFICATION 

This section describes the theory of optimal waveform 
transmission and reception in order to maximize the Ma- 
halanobis distance between two target echoes for the case 
of a single full-polarization waveform, i.e., one contain- 
ing both horizontal and vertical components. Consider the 
2iV-length real-valued transmission signal vector and cor- 
responding frequency response vector 
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with fh, fy, Ffe and F„ each containing N temporal sam- 
ples. The subscripts h and v denote the horizontal and ver- 
tical channels, respectively. This transmit vector is further 
constrained to have finite energy EQ. This energy constraint 
corresponds to the case in which the sum of the transmis- 
sion energies in both the horizontal and vertical channels 
are fixed, so that a single power supply supports both trans- 
mission channels. The 2N x 2N target impulse response 
matrix and corresponding frequency response matrix have 
the form 

(15) <ihv } +-» Q = ( ®hh   ®kv 

<JOT J                    \ Qvh     Qvv 

The target echo vector has the form 

■■(;)-* 

The full-polarization matrix 

/   *o         ri       •••    rN-l\ 

R = 
*i          ro       •••    *N-2 

^rAT-l     rN-2     '"         r0    / 

(16) 

(17) 

is the temporal autocorrelation of the noise plus clutter, with 
the 2 x 2 sub-matrix coefficients 

re s ±£ {Gn(w) + GF{u)}e**"du. (18) 

The matrices Gn(w) and Gjr(w) are the full-polarization 
spectral densities corresponding to the noise and the clutter, 
respectively. The total clutter power spectral density has the 
form 

GF(«) =    GtoHlÄHl2 + Ghv(w)Fh(u)F;(u) (19) 
+    Gvh(u)Fv(u)FZ(w)Gw(w)|F„(a;)|2 > 0 (20) 

The optimization of the transmission vector f in order to 
maximize the square of the full-polarization Mahalanobis 
distance gives 

(21) 7?2=maxfHnf. 
f 

with the matrix fi defined by 

(22) 

For the case of zero clutter Gc(w) = 0, the minimax the- 
orem implies that the maximization of rj2 is obtained when 
the transmission pulse vector f is equal to the eigenvector 
of fi corresponding to the largest eigenvalue. For the case 
of non-zero clutter Gc(w) ^ 0, the autocorrelation matrix 
R depends upon the full-polarization power spectrum of the 
transmission pulse vector f via Eq. (20), so that the iterative 

procedure described for single-polarization above must be 
applied. 

Figure 2 gives the full-polarization waveforms optimized 
to maximize the Mahalanobis distance between the T-72 
and the Ml, as a function of the relative aspect angle for the 
case of white noise and zero clutter. The optimized wave- 
form typically focuses the majority of its energy into a nar- 
row frequency band corresponding to the maximum target 
response at that aspect angle. Figure 3 demonstrates that 
the optimized full-polarization waveform gives an improve- 
ment of 1-5 dB in the Mahalanobis distance over that ob- 
tained from the transmission of a full-polarization chirped 
waveform. 

The analysis described above for the case of aspect cer- 
tainty can be extended to the case of aspect uncertainty in a 
manner similar to that performed for the single-polarization 
case. The resulting theory requires a weighted-average with 
respect to relative aspect angle be performed on the auto- 
correlation kernel matrix 12. This averaging of the full- 
polarization kernel matrices yields a smoothing of the Ma- 
halanobis curves, as was obtained in the single-polarization 
case. 

4 CONCLUSION 

This study investigates the optimization of a single trans- 
mission pulse shape and the receiver impulse response in 
order to maximize the probability of correct identification 
between two target classes. The optimization of the trans- 
mission pulse shaping in order to maximize target identifi- 
cation performance that was developed by Guerci and Pillai 
[9] is extended to include multiple channels, colored noise, 
and non-zero colored clutter. These extensions [11] for the 
identification problem are developed via a maximization of 
the Mahalanobis distance, and thus the probability of cor- 
rect classification, between the echoes of two target classes. 

This study applies this theory [9] and extensions of op- 
timized transmission pulse shaping in order to investigate 
the maximization of the probability of correct identifica- 
tion. Algorithmic implementation for the simulated T-72 
and Ml frequency response data at both single and multiple 
polarizations of the VHF frequency band reveals significant 
improvements in the Mahalanobis distance of using a single 
optimized waveform over that of a standard chirped pulse. 
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Figure 2. This figure gives the full-polarization wave- 
forms optimized to maximize the Mahalanobis dis- 
tance between the T-72 and the Ml, as a function of 
the relative aspect angle for the case of white noise 
and zero clutter. The optimized waveform typically 
focuses the majority of its energy into a narrow fre- 
quency band corresponding to the maximum target 
response at that aspect angle. 

Mahalanobis Distance Comparison: T72 - M1,o = 0, CNR = 0 

180 270 
Aspect Angle (deg) 

Figure 3. This figure demonstrates that the optimized 
full-polarization waveform gives an improvement of 1- 
5 dB in the Mahalanobis distance over that obtained 
from the transmission of a full-polarization chirped 
waveform. 
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ABSTRACT 
We examine the problem of maximum likelihood covari- 
ance estimation using a sensor array in which the relative 
positions of individual sensors change over the observa- 
tion interval The problem is cast as one of estimating 
a structured covariance matrix sequence. A vector space 
structure is imposed on such sequences, and within that 
vector space we define a constraint space given by the in- 
tersection of a hyperplane W± and the space of sequences 
of nonnegative definite matrices W2. Knowledge of the 
changing array geometry is used to reduce the dimension 
of the search space. An extension of the inverse iteration 
algorithm of Burg et at is proposed for finding the maxi- 
mum likelihood solution. 

1. INTRODUCTION 

In many array signal processing applications knowledge of 
the observation covariance matrix is essential. Examples of 
such applications include MVDR beamforming and direc- 
tion of arrival estimation using MUSIC. Many algorithms 
for estimating the covariance matrix are available. Perhaps 
the simplest and at the same time most common is given by 

1    M 
,H (i) 

which is the maximum-likelihood estimate given identical, 
independent, zero-mean random vectors xm with covari- 
ance R. Other estimators incorporate information about the 
array geometry. These are commonly called structured co- 
variance estimators and were introduced in [1]. 

When the array changes shape significantly over an ob- 
servation interval the statistics of the data vectors change, 
however. This invalidates the identical distribution assump- 
tion used to obtain (1) and the assumptions of most struc- 
tured covariance estimation algorithms. The phenomenon 

This research was funded by a grant from MTT Lincoln Laboratory. 

of time-varying arrays of sensors exists in nearly all array 
applications. (No array is truly time-invariant, although they 
may be close enough to achieve the desired performance.) 
The effect is exaggerated, though, in towed sonar arrays 
which are subject to underwater currents and the maneuver- 
ing of their parent platform. An array of sensors in which 
each sensor is mounted on a different platform with its own 
propulsion also constitutes a time-varying array. 

Direction-of-arrival and spectrum estimation for time- 
varying arrays has been addressed by a number of authors. 
Direction-of-arrival estimation was addressed in [2] and [3]. 
Fast algorithms for doing the same which are based on the 
eigenstructure of the matrix are presented in [4]. In [5] 
the EM algorithm is used to estimate the power of far-field 
sources using a time-varying array. 

In this paper we address the problem of maximimum 
likelihood (ML) covariance estimation for time-varying ar- 
rays. We proceed by defining a mathematical infrastructure 
and applying commonly used linear algebra techniques. We 
then propose several search algorithms to find the covari- 
ance that maximizes the likelihood under several constraints 
imposed by the array motion. What results may be consid- 
ered a time-varying structured covariance estimation algo- 
rithm. 

2. DEFINITIONS 

Let AT be the number of elements in the array and p „ (t) € 
R3 be the position of the nth element at time t. Let M 
denote the number of data vectors sampled by the array at 
times {fi,*2,--- ,tAt} with sampling frequency Fs. The 
mth data vector we represent by xm which is a normally 
distributed complex random variable with mean 0 and co- 
variance R(im) = Rm. The time-varying nature of the 
array implies that Rm need not equal Rm+i. The problem 
is therefore to estimate Rm for m = 1, • • • , M. 

We make two assumptions regarding the available infor- 
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mation. First, the JV x 1 steering vector a(0, t) is known for 
all tm and for all 0 € S2. The nth element of the steering 
vector is given by 

&n(Q,t) =exp kT(0)Pn(f) 
(2) 

where k(0) is the unit vector associated with the direction 
0. Secondly, the signal originating at any direction is un- 
correlated with signals originating at other directions. Also, 
the sampling rate is such that the sampled signals are in- 
dependent random variables. The time-varying covariance 
matrix is then given by 

Rm= I  <r2(0)a(0,tm)aff(0,tm)d0        (3) 
Js2 

where a2 (Q)d& is the time-invariant power of the differen- 
tial emitter at location 0. 

Since we are interested in a sequence of Hermitian ma- 
trices let us introduce the following notation: 

Definition 1 For positive integers N and M, let VN,M be a 
space such that X € VN,M implies that X = [Xi, • - '• , XM] 
where Xm € Cr"" ^N*NandX%=Xr, 

Observe that we denote elements of this space by capital, 
bold-faced letters with an overbar and the rath element of 
the sequence by the same letter with a subscript. For some 
a € R and X € VN,M we define scalar multiplication as 

aX = [aXi,--- ,aXM]. (4) 

Similarly, addition is defined element-wise,that is for X, Y e 
VN,M 

X + YSIXJ+Y^-^+YM]. (5) 

It is easy to see that under these operations Vjv, M is a vector 
space over R. For notational convenience we also define the 
following operations on vectors: 

XY = 
X-X  = 

[XiY1;--- ,XMYJW] 

'XJif J 

(6) 
(7) 

Notice that under vector addition as defined in (5) and using 
(6) as vector multiplication, VN,M forms a non-commutative 
ring . The multiplicative identity is then the length-M se- 
quence of N x N identity matrices and (7) is the multiplica- 
tive inverse of X. With this in mind, it would be appropriate 
to refer to (6) and (7) as multiplication and inversion respec- 
tively. 

Definition 2 VX, Y € VN>M let 

M 

{X,Y)=^tr(X«Yro). 

We claim that this is an inner product on VJV.M- This is a 
result of the following facts which are easily proved for all 
a 6 R and X, Y, Z € VNiM: 

(X,Y)eR 
<X + Y,Z> = <X,Z) + <Y,Z> 

<aX,Y) = a<X,Y) 
<X,Y> = {Y,X> 
<X, X) > 0 with equality iff X = [0. • • • , 0] 

Therefore (VJV.M7 (, ■,)) is an inner product space. 
The covariance matrix sequence is an element, R, of 

VN,M- 
wüh this in mind we can rewrite (3) as 

R= f  a2(0)*(0)d0 
Js2 (8) 

where 

«(0) = {a(0,t1)a
H(0,t1),--- MQ,tM)a.H(@,tM)}. 

The span of $(0) over all 0 € S2 is a vector subspace of 
VN,M- We will call this subspace Wi. It is clear from (8) 
that R € Wi. Being a vector space, Wi is convex and there- 
fore path-connected. Furthermore, there exists an orthonor- 
mal basis for Wi. We will let W2 e VNtM be the space of 
all length-M sequences of non-negative definite Hermitian 
matrices. Since any covariance matrix is non-negative def- 
inite, R € W2. It can be shown that W2 is also convex. 
Since the desired sequence lies within both subspaces the 
constraint space is their intersection W = Wx D W2. As the 
intersection of two convex sets, W is also convex. 

We remark that the set of matrix sequences W may not 
coincide exactly with the space of matrix sequences given 
by the model in (3), although as has been shown the latter 
is a subset of W. Our constraint space may contain elements 
outside of the cone described by (3). The discrepancy be- 
tween the two spaces, and the consequences thereof, remain 
open questions. 

We will now derive the log-likelihood function of the 
covariance matrix sequence for the given data set. The pdf 
of the data vectors is defined only for the interior of Wi: 

/(x1,---,xM) = 7r-^MmiR™l"1) 

xexpUf^R-O.   (9) 
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The log-likelihood is then 

M M 

i(R) = - J2 h I»™! - £ tr (^B^x™) 
m=l m—1 

M M 

= - £ In IRml - £ tr (RÄ)        (10) 

where we shall call 

^171 *TR^7Ji (11) 

thesamplecovariancematrixattimer.m. ObservethatSm = 
S^ and therefore the length-M sequence of all such matri- 
ces, S, is an element of VN,M■ We can use the notation of 
definition 2 to simplify (10): 

M 

i(R;S) = -5]ln|Rra|-{R-1,S).        (12) 

To find the gradient of the log-likelihood function we 
will make use of several differentiation theorems found in 
[1]. 

Theorem 1 For R, $ e C NxN 

— lnlR + xS^trCR-1^). 
ax 

Theorem 2 For R. S. 4> e CNxN, 

4- tr((R + x*ylS) = - trCR-^R-^). 
ax 

The directional derivative of the log-likelihood along the 
vector $ is 

d d   A' 
/(R + r*:S) = -— £ ^IBm + ar$r> 

dx 
m=l 

= - £ tr(Rr;
l*m) - trCR^^R^S™) 

M 

= - £ "'B^1*,,, - R"1SmR-1$m) 

A/ 

= - £ »((B„; - R-1smR-1)$m) 

(13) 

Therefore the gradient of the log-likelihood function is given 
by 

VZ(R, S) = R-^SR-1 - R-1. (14) 

Note the similarity of this expression to the analogous ex- 
pression for the gradient of the log-likelihood in Burg et al. 
[1]. Here the matrices have been replaced with matrix se- 
quences. 

3. ESTIMATION ALGORITHMS 

One possible estimator is the projection of the sample co- 
variance matrix sequence, S, onto the constraint space W. 
This is equivalent to selecting the point in W that is the 
closest to S by the standard distance metric for inner prod- 
uct spaces: 

d(X,Y) = <X-Y,X-Y)5. (15) 

Because of the similarity between this estimator and clas- 
sic filtering where a signal is projected onto the subspace 
of all signals which satisfy a certain constraint, we will re- 
fer to this estimator as the sample sequence filter. Since 
W is the intersection of two convex spaces we employ the 
method of projection onto convex sets (POCS) in which the 
estimate is first projected onto Wi and then onto W2. This 
iterative procedure continues until the improvement in like- 
lihood gained with each iteration is negligible. Since W\ is 
a vector subspace the projection of a vector X onto W\ is 
given by 

X' = £<X,*,)*, (16) 
i=i 

where $; are the members of an orthonormal basis of Wi 
and L is the dimension. 

Projection onto Wi for the given inner product is found 
in [6]. First, the eigendecomposition is determined: 

-"■m — ■*■ m^-mX rn (17) 

Then the projection onto the set of non-negative definite ma- 
trices is given by setting the negative eigenvalues to 0: 

x^ = rromax(Am,o)r; (18) 

The projection of the sequence X onto Wi is the element- 
wise projection of each Xm as described by this equation. 

The sample sequence filter, by its definition, finds the 
sequence which is in the constraint space and the closest to 
the sample sequence by the distance metric given in (15). 
Experience has shown, however, that the best estimate is 
rarely the closest to the sample sequence. We therefore pro- 
pose searching the constraint space for the maximum likeli- 
hood estimate using the filtered sample sequence as a start- 
ing point. 

Each of the search algorithms which we will consider 
proceed by calculating a search direction, D € W\, along 
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which the likelihood function must be maximized. That is, 
in each iteration we determine a D and then find A0 such 
that 

*(») 
A0 = argmaxZ(R    + AD). 

The updated estimate is 

= (t+i)      - (t) 
R        =R    +AoD. 

This iterative process should be allowed to continue until 
the gradient is sufficiently close to being orthogonal to Wx, 
that is until 

<VZ(R;S),VZ(R;S)) 
<e. (19) 

Observe that since Z is defined only on the interior of W2 and 
D 6 Wi, the estimate will be within the constraint space at 
each iteration. 

Perhaps the most obvious approach to calculating D is 
to use the gradient in (14). D can be the projection of the 
gradient onto Wx. Alternatively, a conjugate gradient direc- 
tion can be calculated by incorporating memory of previous 
search directions. We suggest, however, a modification of 
the inverse iteration algorithm proposed by Burg, et cd. in 
[1]. Burg's algorithm was designed for estimation of a sin- 
gle matrix rather than a sequence of matrices but is easily 

- (») 
generalized for sequences. For some estimate R    select a 

- (») 
search direction, D, such that VZ(R   ; S-D) is orthogonal 

- (i) 
to Wi. Clearly, if D = 0 then R is the maximum likeli- 
hood estimate since the likelihood gradient is orthogonal to 
the constraint space at that point. 

Before the modified inverse iteration algorithm may be 
seriously considered, though, one must ask whether a sta- 
ble point of the algorithm maximizes the likelihood func- 
tion within the constraint space. That is, does each iteration 
of the algorithm lead to an improvement in likelihood for a 
nonzero search direction? The answer is yes, as shown by 
the following theorem: 

Theorem 3 Suppose there exists D ^ 0 € Wx such that 
VZ(R;S-D) is orthogonal to W1. Then there exists X € R, 
A # 0, such that Z(R + AD; S) > Z(R; §). 

Proof: By way of contradiction, suppose that 

argmaxZ(R + AD;S) = 0. 

This implies that VZ(R; S) is orthogonal to D. That is, 

<VZ(R;S),D> = 0. 

Therefore, 

<VZ(R;S -D),D) = {R-^S -D)R-1 -R-\D> 

= {VZ(R,S)-R-1DR-1,D> 

= -(R-1DR-1,D> 

Since D € Wx we know that <VZ(R; S - D), D) = 0. 
Therefore 

{R-1DR-1,D)=0. 

It can be shown that this implies that R^D™ = 0 for all 
m. Therefore Dm = 0 for all m which is a contradiction. 
■ 

We now concentrate on finding the direction which sat- 
isfies the necessary condition on the gradient. This is equiv- 
alent to finding D which satisfies 

{R-1(S-D)R-1-R-1,$i) = 0 (20) 

for all i. We note that this is a system of equations which are 
linear in D and that therefore a closed-form solution exists. 
Since D 6 W\ there exist real a>j such that 

0 = ^0^. (21) 
3 

Substituting (21) into (20) and rearranging we get 

(R-1(S-D)R-1-R-1,#i) 

= (R-^S - Y, aj*i)R_1 - A-1, *»> 
3 

= <VZ(R; S), $i> - ]T a^R-^R-1, *<>.   (22) 

Therefore we need only find a € RL such that 

Aa = B 

where 

Ay = {R-1*iR-1,#i) 

4. COMPUTER SIMULATION 

(23) 

(24) 
(25) 

We have simulated a uniform linear array (ULA) consist- 
ing of N = 5 isotropic sensors which is rotating with ro- 
tational velocity u about the center element. The axis of 
rotation is orthogonal to the axis of the ULA. There are 3 
source fields impinging upon the array which originate at 
(azimuth,elevation) = (45°, 0°), (85°, 20°), and (110°, 0°). 
Here azimuth is the the angle made with the axis of the ar- 
ray at t = 0 and within the plane of rotation. Elevation 
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Figure 1: Algorithm convergence rate comparison. 

is the angle made with the plane of rotation. For example, 
(90°, 10°) would describe a direction orthogonal to the ini- 
tial array axis and 10° above the plane of rotation. Each 
of the sources are assumed to be narrowband with wave- 
length A and the separation between elements in the ULA 
is \. The power of each source at the array is 30dB, 15dB, 
and 20dB respectively. Receiver noise is OdB. The rota- 
tional velocity of the array is w = 27r rad/sec, the sampling 
rate is Fs — 32s-1, and the number of samples collected 
is M = 16. Therefore, the array gathers 16 data vectors 
while completing a half rotation. Since the statistics of the 
data vector change dramatically over this observation inter- 
val one expects the covariance estimator in (1) to perform 
badly. It is unclear even what steering vector to use with 
this covariance estimate in, for example, an MVDR or MU- 
SIC estimator. That makes this scenario a good candidate 
for covariance matrix sequence estimation. 

Each of the algorithms considered begins by calculating 
the sample covariance matrix sequence and filtering it by 
the method of POCS using the projections in (16) and (18). 
The #; are obtained by Gram-Schmidt orthonormalization 
of the set of vectors #(0) where 6 is a discretization of the 
2-sphere. For this example, the dimension of W\ is L = 
76. Note that the dimension of VN,M is N^M — 400 and 
we have managed to eliminate 324 parameters of the matrix 
sequence by applying information about the motion of the 
array. 

The ML search routine follows the filtering. We applied 
a gradient and conjugate gradient search algorithm in addi- 
tion to the modified inverse iteration algorithm. The likeli- 
hood of the estimate at each iteration is plotted in Figure 1 
for each of the algorithms. 

Observe that the gradient and conjugate gradient algo- 
rithms converge to points with the same likelihood.  The 

Figure 2: MVDR spectrum estimated from the first matrix 
in the sequence. The dashed line is that obtained from the 
sample sequence filtering procedure. The solid line was cal- 
culated from the ML sequence. 

conjugate gradient reaches this point in fewer iterations, which 
is to be expected. However, the convergence point of the in- 
verse iteration algorithms exceeds the likelihood of the es- 
timate obtained from either gradient algorithm after only a 
few iterations. Inspection of the likelihood gradient at what 
appears to be the convergence point of the gradient algo- 
rithms reveals that it is not orthogonal to W\ and that while 
successive iterations yield only slight improvement in like- 
lihood, they have failed to reach a local maxima. One possi- 
bility is that they have stumbled upon a "ridge" in the like- 
lihood function. It is clear that, in this example at least, the 
inverse iteration algorithm reaches a solution in fewer itera- 
tions than even the conjugate gradient algorithm. It should 
be noted, however, that finding the solution to (23) requires 
more compuation than calculating the likelihood gradient 
and projecting it onto Wi. 

To demonstrate the validity of the ML estimate, the MVDR 
spectrum corresponding to the first matrix in the sequence 
has been calculated and plotted in Figure 2. The spectrum 
is calculated using 

ä2(ö) = 
a^fl.tORrV*,*!) 

(26) 

Ri is the first matrix in the sequence obtained by the in- 
verse iteration algorithm since the other two algorithms failed 
to produce a maximum likelihood estimate. The position of 
each of the sources is easily ascertained from the plot as is 
a feeling for their intensities. Also plotted is the spectrum 
obtained from just the sample sequence filter. While peaks 
which correspond to two of the sources can be seen, the 
third is lost and the background noise is quite high. This 
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demonstrates the necessity of the ML search algorithms. 

5. CONCLUSIONS 

We have developed an algorithm for estimating the sequence 
of matrices which are the covariances of the data vectors of 
a time-varying sensor array. Since each matrix in the se- 
quence is structured to satisfy (3) this may be classified as 
a structured covariance estimation algorithm in which the 
sequence of matrices itself is structured. This method will 
have good performance for time-varying arrays in which the 
array motion is periodic, as with the rotating ULA, since 
the constraint space basis need not be continuously recalcu- 
lated, which relieves the processor of some of the compu- 
tational burden. It has been demonstrated that the modified 
inverse iterations algorithm can converge faster and more 
reliably than a simple gradient search algorithm, although 
with increased computational complexity per iteration. 
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ABSTRACT 

This paper presents the development and performance evaluation 
of a methodology for distinguishing between mainlobe and side- 
lobe detections that arise in adaptive radar systems operating in 
adverse environments. Various adaptive detection test statistics 
such as the adaptive matched filter (AMF), the generalized like- 
lihood ratio test (GLRT) and adaptive coherence estimate (ACE), 
and combinations of these, have been previously analyzed with re- 
spect to their sidelobe rejection capabilities. In contrast to these 
methods which are based on detecting a single target with known 
direction and Doppler, the present method uses model order deter- 
mination techniques applied to the AMF or GLRT data observed 
over the range of unknown angle and Doppler parameters. The de- 
termination of model order, i.e., the number of signals present in 
the data, is made by using least-squares model fit error residuals 
and applying the Akaike Information Criterion. Comprehensive 
computer simulation results are presented which demonstrate sub- 
stantial improvement in sidelobe rejection performance and detec- 
tions of multiple sources compared to previous methods. 

1. INTRODUCTION 

A variety of constant false-alarm rate (CFAR) adaptive detection 
statistics have been developed and analyzed for radar target de- 
tection in adverse environments [l]-[8]. Adaptive beamforming, 
adaptive filtering and, generally, joint space-time adaptive process- 
ing (STAP) methods are being increasingly considered for airborne 
radar detection of low-Doppler targets immersed in ground clutter 
and subject to directional noise jamming. An important issue that 
needs to be considered is the sidelobe performance of these adap- 
tive detection algorithms. "False" sidelobe detections can arise 
due to undernulled interferences, intrinsically high sidelobes gen- 
erated by the adaptive beamforming space-time algorithms used 
with limited data snapshots, and other reasons. This can result in 
an unacceptably high false alarm rate. Previous works have fo- 
cused on determining the sidelobe rejection performance of the 
adaptive matched filter (AMF) test [3],[6], the generalized likeli- 
hood ratio test (GLRT) of Kelly [ 1 ], the adaptive coherence estima- 
tor (ACE) test and a cascade of AMF/ACE test [4] or AMF/GLRT 
test [8]. It is to be noted that all of these previous methods are 
based on applying adaptive detection criteria developed for detect- 
ing a single target signal with known direction and Doppler in cor- 
related noise. In contrast to this, the present work uses multiple 
maximum-likelihood model order fits to the AMF or GLRT data 

observed over the range of the unknown angle and Doppler param- 
eters. The resulting fit error residuals are used in the Akaike In- 
formation Criterion (AIC) to deduce the correct model order and 
thereby reject "false" sidelobe detections, and improve detection 
and resolution of multiple sources. 

2. MAXIMUM-LIKELIHOOD MODEL ORDER 
DETERMINATION USING AMF OR GLRT 

We begin by considering two well-known adaptive detection meth- 
ods, AMF and GLRT, as a starting point for our new method de- 
scribed below and also for performance comparison purposes. We 
consider an JV-element array and seek to determine the presence of 
one or more signals in an observation vector (or snapshot) x called 
the test cell. The methodology developed here applies to the gen- 
eral STAP problem where the data vector x can be a concatenated 
space-time vector of array element data and coherent pulse sam- 
ples; however, the computer simulation results presented in section 
5 use only simulated spatial array data so our development here 
will be mainly presented in that context 

Consider then that the AMF [3] and GLRT [1] metrics have 
been computed as a function of angle (azimuth) and result in the 
following test: 

JAMF(ö) = 
d(0)*R-id(0) 

= w(0)ffx 
|2 H, 

> KaAMF,      (1) 
Ho 

where d(0) is the signal steering vector for angle 6, i.e., the array 
response vector, R is the sample covariance matrix of the interfer- 
ence plus noise (whose true covariance matrix is R), based on an 
auxiliary set of K data vectors x,, i = 1,... , K which share the 
same interference plus noise only covariance matrix with the test 
datax 

1 R = JF z2 XiXi ' (2) 

and KatMF is the threshold which can be determined numerically 
for a given false alarm PFA- The hypothesis Hi denotes signal plus 
noise and the null hypothesis Ho denotes noise only. An alternate 
form is shown on the right side of (1) where an array weight vector 

d(0)»R-id(0) . mlW)/\f> w(0) can be defined as w(0) = R' 

Equation (1) represents the adapted array output for the test vec- 
tor x normalized by the output interference plus noise power. 
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would include the peaks of the JAMF(0) function. We have 

Fig. 1. JAMF(ö) function for a 20dB signal at broadside, N = 10, 
K = 100, PFA = 10~6. 

In order to control the sidelobe response of the adaptive ar- 
ray, the weight vector w(9) is often computed as w(0)   = 

R_1dsh(ö) /y/d,h(0)nji-idsh(6) , whered,h(9) = d(0)© 

wr and WT is an appropriate taper or shading function, and © 
denotes the element-by-element Schur product. 

TheGLRTtestis 

(3) 

where Ky is the threshold which can be determined for a given 
false alarm PFA. The JAMF(0) or JGUCT(8) are evaluated at some 
discrete set of points in the angle 8 which covers the range of ex- 
pected target angles. Note that as far as variation with 9 is con- 
cerned, JGLKT(ö) is merely proportional to JAMF(ö) since the de- 
nominator in (3) does not depend explicitly on the search variable 
8. An example of the JAMF(0) function for a single target is shown 
in Figure 1. Note that if all peaks above the threshold, which has 
been set for a probability of false alarm PFA of 10-6, were to be 
considered detections the figure shows that there should be six de- 
tections of which five of them would be false alarms (solid line). 
Even if a Chebyshev taper with —50dB sidelobe level is used, there 
are still two false detections (dashed line). The shading is only 
partly effective in the presence of interferences, in this case one 
jammer at —30 degrees. 

Now assume that the test data vector contains m target signals, 
m = 0,1,... , M where the maximum number M may be known 
from system considerations. Then, 

x = D3a + n, (4) 

where Ds = [d(03i), • • - , d(8sm)] is a N x m matrix of target 
steering vectors and a is an m x 1 vector of complex amplitudes 
of the m signals. The complex value of the JAMF(ö) function rep- 
resents the application of the weight vector w(0) to the vector x 
resulting in the expression 

y(8) = w(0)*x = w(0)HDsa + v(8), (5) 

where v{8) = w(0)Hn. We assume that y(8) has been evaluated 
at KP distinct points 8\,... , 8Kp, where Kp > m. These points 

ä/i 
= 

w(0i)HDsa   " 

+ 
"   v{8{) 

.  VKp   . . v{8KP)HT>sa . L <6*r) 
or, compactly, 

Y = Ha + v, 

(6) 

(7) 

where H = W*D3, and W = [w(0i), • • • , w(8Kp)], and v = 
[v(8i), ■■■ , V(8KP)]

T
- The covariance matrix of v is 

Rv = E[ws] = WHRW. (8) 

Since the order of the square matrix Rv is Kp and the transfor- 
mation in (8) necessarily yields rank(Rv) < JV, it follows that we 
must have Kp < N for Rv to be nonsingular. Hence we require 
that m < Kp < N. Denote the sample covariance matrix of 
v as Rv. Under the assumption of Gaussian statistics for the in- 
terference plus noise vector n, the maximum-likelihood estimates 
of the amplitude vector a and the angles ©s = [ösi, • • • , 8sm] 
are obtained by minimizing the nonlinear weighted least-squares 
criterion 

JM.(a, 63) = [Y - Ha]* R^1 [Y - Ha] 

=   Rv-^[Y-Ha] (9) 

where RCT is the square-root of the Hermitian positive-definite 
matrix Rv"1 and ||-|| denotes the Euclidean norm of a vector. Let 
Z = Rv"1/2Y, the "whitened" data vector and H„ = Rv"1/2H. 
Then, 

JML(a,e,) = ||Z-H„(e.)a|| (10) 

For a given 8S, as is well known, JML is minimized with respect 
to a when 

a = [H^(6.)H„(e, )]-1H£(e3)Z. (11) 

Substitution of a as given by (11) into (10) yields the weighted 
least-squares residual JML as 

Ji«.(i,e.) = ||(i-p(e.))z|| (12) 

where P(6,) = H«,(6,) [H*(0s)Hu,(e3)]"
1H*(es) is the 

orthogonal projection operator and I is the identity matrix. Equa- 
tion (12) can be further minimized with respect to ©s yielding the 
maximum-likelihood estimate 0S. However, it is noted that this 
is a nonlinear optimization problem which may be computation- 
ally expensive to solve for m > 2. For most of the sidelobe de- 
tection problems considered here involving comparable strength 
targets that are likely to be separated from each other by more 
than a beamwidth, the locations of the peaks of the JAMF(ö) func- 
tion (which can be readily computed) provide a reasonably accu- 
rate estimate of ©s and are used to evaluate (12). However, for 
some problems, e.g., the detection and resolution of a weak source 
in presence of a strong source, the location of the global peak of 
JAMF(ö) may be taken as the angle estimate 8\ corresponding to 
one source while 92 is varied so as to minimize (12), keeping 8i 
fixed. 
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It is noted that the preceding development has been given in 
"beam-space" since this reduces computations and is most appro- 
priate for resolving sidelobe detections obtained with using the 
JAMF(6) function (a normalized beam-space function). It can be 
seen that the element-space solution can be obtained either directly 
or from the preceding development by choosing Kp = N and W 
to be the N x JV identity matrix. A simulation example using the 
element-space solution is given in section 5. 

The number of target signals is determined by applying the 
procedure described above for model orders m = 1,2,... , M 
and choosing that m for which the Akaike Information Criterion 
[9].[10] given below is a minimum: 

AIC(m) = — log(Likelihood function|a, 03, m) 
+ (number of independently 

adjusted parameters in model) 

= JML(a,6s)+3m, (13) 

where JML^G,) is given by (12) and the approximate estimate 
©s discussed above is used. The method derived here is referred 
to as the Multi-Target AMF (MT-AMF) method. 

3. DIAGONAL LOADING 

Diagonal loading is a simple and commonly used procedure for 
sidelobe reduction. It is often used when the number of snapshots 
K is small, e.g., less than twice the number of elements. The 
diagonal loading operation simply adds a diagonal matrix to the 
sample covariance matrix to overweight its diagonal elements, i.e., 

RDL = R + <TI, (14) 

where a is the diagonal loading factor. In the case of uncorre- 
lated interference and noise, diagonal loading modifies the sample 
covariance matrix at the cost of noise enhancement In the case of 
correlated interference, a large amount of diagonal loading also de- 
grades the adaptive interference cancellation. However, it has been 
shown that a reasonable amount of a can dramatically improve the 
performance for small K. 

When diagonal loading is applied, the AMF function is given 
by 

JAMF(0) = 
d(0)»R^x| 

d(e)»R^L
lRB^L

1d(e) 
(15) 

Additional tapered weight can be applied by replacing d(0) by 
dsh(6). In the matched filter (MF) case, i.e., K = oo, the de- 
tection statistic does not change when diagonal loading is applied. 
However, in the case of limited snapshots, the determination of the 
threshold for a given PFA seems to be analytically intractable [11]. 
Thus, a Monte Carlo computation is required. For an uncorrelated 
interference and noise case, the authors in [12] have shown im- 
provement of signal detection for small K using diagonal loading. 
In this paper, we show similar improvement of PD in the case of 
correlated interference. In addition, we apply the MT-AMF to the 
diagonally loaded AMF function to further reduce false sidelobe 
detections. 

4. MULTI-TARGET GLRT 

Although this paper has emphasized the multi-target AMF in the 
development and performance evaluation, it is noted here that the 
authors have derived [13] a generalization of Kelly's GLRT adap- 
tive detection statistic [1] to multiple targets. It is shown in [13] 
that the multi-target version of Kelly's GLRT for M targets located 
at angles &$ = [0si, • • • , 0,M] is given by 

Jm-Gua(&s) ■ 
P(e*)y 

i + *lly 
(16) 

where *(&*) = D«,(6.) [D|(e,)D„(9,)] ^(e,) and 
D„(9.) = R"1/2D,(e,). R~1/2 is the square-root of the 
Hermitian positive-definite matrix R-1. y = R_1/2x is the 
"whitened" data vector and P(0«) is the orthogonal projection 
operator that projects any vector onto the subspace spanned by the 
columns of D3(6S) (i.e., the subspace spanned by the steering 
vectors of the M targets). 

5. PERFORMANCE EVALUATION 

The PFA of the GLRT test is given by [3] 

1 
PFA.GLRT = (1 + a) (17) 

where L = K + 1 - N, a = 7/ (1 + 7), and 7 is the threshold 
term of (3). The threshold for the AMF is determined by evaluating 
the following integral using numerical integration and bisection 
iterations as in [3]: 

PFAAMF 
JO 

fßUr,L + l,N-l) 
(1 + POCAMF)

1
- 

dp, 

where 

fß(x;n,m) = 
(n + m-1)! 

(n - l)!(m - 1)! 
_1(1-*)" 

(18) 

(19) 

is the central Beta density function, and p is the loss factor which 
considers the SNR loss due to finite number of snapshots in the 
sample covariance matrix. The analytic form of the probability 
of detection for a single source is also given in [3] which we ex- 
cluded for brevity. Our Monte Carlo simulation results have been 
confirmed to match these analytical curves. 

We consider a linear equally spaced array of 10 elements with 
half-wavelength spacing (nominal beamwidth = 12 degrees) for 
most of the simulations provided in this section. A noise jammer 
signal of strength 40dB relative to thermal noise is placed at —30 
degrees and the PFA issettobe 10~6. The scanning angles are from 
—50 to 50 degrees in azimuth. A single source of varying SNR is 
placed at broadside and the performance of the algorithms in single 
source detection and false sidelobe rejections are compared. The 
AMF detection only relies on the peaks above the given threshold, 
but the MT-AMF test takes the peaks (for all simulation examples 
except the last one) and tests for model order m = 1 and 2. If 
m = 1 is decided, the overall peak is retained as an indicator of a 
single signal and the other peaks are rejected. The probability of 
detecting the mainlobe signal is plotted in Figure 2, regardless of 
the number of peaks or model decisions, after 5000 Monte Carlo 
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runs. We observe no loss in the detection for the MT-AMF method. 
Then, the probability of false sidelobe detections is plotted for the 
two algorithms in Figure 3. The AMF gives rise to high false side- 
lobe detections at high SNR, but the MT-AMF greatly reduces the 
false sidelobe detections and its probability also saturates as SNR 
increases. The false sidelobe detections of the proposed method go 
down rapidly for increasing K and the lower bound is for K = oo, 
which is the multi-target matched filter. For tapered weight vector 
w(0), we also compare the sidelobe rejections performance, as 
depicted in Figure 4. Note that the use of a taper with the con- 
ventional AMF method only reduces sidelobe detections slightly 
at the cost of a slight decrease in mainlobe detection probability 
(not shown). However, the use of model order determination using 
AIC with tapered AMF data shows almost the same dramatic im- 
provement in reducing false sidelobe detections as before with the 
same mainlobe detection probability as the conventional tapered 
AMF. 

The same single source scenario except for a PFA of 10~3 and 
K = 20 using diagonal loading and tapered weights is further 
studied. Monte Carlo simulations are performed to determine the 
thresholds which yield the equivalent PFA for various levels of di- 
agonal loading. Note in this case the PFA accounts for not only 
the noise but also the jammer that is not effectively cancelled due 
to the use of diagonal loading. The probability of detecting the 
mainlobe signal is plotted in Figure 5. Note the improved PD per- 
formance using various levels of diagonal loading. The MT-AMF 
with diagonal loading and tapering also yields identical PD per- 
formance. The probability of false sidelobe detections is plotted 
for the two methods in Figure 6. As the diagonal loading level 
increases, the probability of false sidelobe detections using AMF 
lowers most of the time (except for the high SNR region). On the 
other hand, the MT-AMF shows significant improvement in reduc- 
ing false sidelobe detections comparing to the AMF with the same 
diagonal loading level. 

Then, two sources of equal strength are placed at broadside and 
45 degrees. The probability of detecting both sources within a 
±10 degrees angle constraint is plotted for the AMF and MT- 
AMF algorithms, as depicted in Figure 7. We observe the same 
detections between the conventional method and the proposed al- 
gorithm. The two sources detections using the GLRT is plotted 
in Figure 8. However, for K = 20, the GLRT yields extremely 
poor performance in detecting both sources due to the normaliza- 
tion factor in the denominator of (3). The derivation of the GLRT 
is under the assumption of a single source; therefore, despite its 
advantage in single source detections, as depicted in Figure 9, and 
sidelobe rejections for lower A', as depicted in Figure 10, it is not 
an appropriate model for two sources. 

Another two sources detecuons scenario is analyzed for a lin- 
ear equally spaced arras of 32 elements. One mainlobe source 
is placed at broadside with an array SNR of 25dB, and a second 
sidelobe source is placed al 45 degrees with varying SNR levels. 
A noise jammer signal of strength 40dB relative to thermal noise 
is again placed ai -30 degrees and the PFA is set to be 10-6. The 
MT-AMF and MT element space methods are applied to source 
detections with a varying angle search of the weaker source and 
fixing the angle of the stronger source at the global peak of the 
AMF function. The number of data points Kp used in the MT- 
AMF is nominally N/2 and are taken from the peaks of the AMF 
function without the threshold constraint We count detections of 
both sources when the model order decision yields m = 2 and 
the angle estimates are within ±3.2 degrees (nominal beamwidth) 
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Fig. 2. Probability of detecting single mainlobe target signal using 
AMF and MT-AMF. Note equal performances of the two methods. 

WC: FASE SIOELOTJE DETECTIONS. N - 10. P.. - 10"" 

Fig. 3. Probability of false sidelobe detections using AMF and 
MT-AMF. Note the substantial improvement of the MT-AMF 
method in false sidelobe rejections at high SNR. 

of the true angle of arrivals. As depicted in Figure 11, the MT- 
AMF method improves the detections of both sources significantly 
from the AMF method, where the detections are based on the top 
two peaks above the threshold. When the strength of the side- 
lobe source dominates, strong interactions of its sidelobe response 
would perturb the weaker mainlobe source and reduce the prob- 
ability of detections. Nevertheless, we can resolve such problem 
by using the MT-AMF method. The MT element space method is 
applied to the element data x and further improves the two sources 
detections; nonetheless, the beam-space MT-AMF method has sig- 
nificant computational advantages when the number of elements is 
large. The ML element space method, which searches for the ab- 
solute minimum residual on the two-dimensional angle parameter 
space (high computational complexity), is also shown as the upper 
bound of the two sources detections. 
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Fig. 4. Probability of false sidelobe detections using tapered AMF 
weights (—50dB Chebyshev). Note significant improvement even 
when taper is used. 

Fig. 7. Probability of detecting both sources within ±10 degrees 
using AMF and MT-AME Note equal performances of the two 
methods. 

AMF: SINGLE SOURCE DETECTION (DIAGONAL LOADING * TAPER). N - 10. K - 20. R.A-10~* 
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Fig. 5. Probability of detecting single mainlobe target signal using 
the diagonal loaded and tapered (—50dB Chebyshev) AMF and 
MT-AMF. Note equal performances of the two methods. 

Fig. 8. Probability of detecting both sources within ±10 de- 
grees using GLRT. Note the degraded performance, especially for 
smaller K. 

AUF: FALSE STOELOBE DETECTIONS (DIAGONAL LOAWNG + TAPER). H - 10, K - !0. I>  - 1 (f3 
GLRT: SINGLE SOURCE DETECTION. N ■ 10. P„ -10"* 
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Fig. 6. Probability of false sidelobe detections using diagonally 
loaded and tapered AMF weights. Note significant improvement 
even when diagonal loading and taper are used. 

Fig. 9. Probability of detecting single mainlobe target signal using 
GLRT. Note superior performance over AMF and MT-AMF for 
small K. 
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6. CONCLUSIONS 

GLRT: FALSE SDELOBE DETECTIONS, N- 10. 

Fig. 10. Probability of false sidelobe detections using GLRT. Note 
good sidelobe rejection capability for smaller K at the expense of 
reduced detections of two sources (Fig. 8). 

e^ -*- ML ELEMENT-SPACE 
— MT ELEMENT-SPACE 
-©- MT-AMF BEAM-SPACE 

ARRAY St« Of THE SIDELOBE SOURCE [d 

Fig. 11. Probability of detecting both sources within ±3.2 degrees 
using AMF, MT-AMF, and MT element space methods. Note su- 
perior performances of the two MT methods. 

In this paper, we have shown substantial false sidelobe rejection 
improvement and two sources detections using the proposed model 
order determination method. The algorithm is efficient in compu- 
tations and can be easily implemented in existing adaptive radar 
systems. 

7. REFERENCES 

[1] E.J. Kelly, "An Adaptive Detection Algorithm," IEEE Trans, 
on Aerospace and Electronics Systems, vol. AES-22, no. 1, 
pp. 115-127, Mar. 1986. 

[2] E.J. Kelly, "Performance of an Adaptive Detection Algo- 
rithm: Rejection of Unwanted Signals," IEEE Trans, on 
Aerospace and Electronics Systems, vol. AES-25, no. 2, pp. 
122-133, Mar. 1989. 

[3] F.C. Robey, D.R. Fuhrmann, E.J. Kelly, and R. Nitzberg, "A 
CFAR Adaptive Matched Filter Detector," IEEE Trans, on 
Aerospace and Electronics Systems, vol. 28, no. 1, pp. 208- 
216, Mar. 1992. 

[4] D. E. Kreithen, C.F. Pearson, and CD. Richmond, "Adaptive 
Sidelobe Blanker A Novel Method of Performance Evalu- 
ation and Threshold Setting in the Presence of Inhomoge- 
neous Clutter," in Proc. 32ndAsilomar Conf. Signals Syst. & 
Comp., vol. 2, pp.528-32, Pacific Grove, CA, Nov. 1998. 

[5] CD. Richmond, "Performance of the Adaptive Sidelobe 
Blanker Detection Algorithm in Homogeneous Environ- 
ments," IEEE Trans, on Signal Processing, vol. 48, no. 5, 
pp. 1235^7, May 2000. 

[6] CD. Richmond, "Performance of a Class of Adaptive Detec- 
tion Algorithms in Nonhomogeneous Environments," IEEE 
Trans, on Signal Processing, vol. 48, no. 5, pp. 1248-62, May 
2000. 

[7] R. A. Monzingo and T. W. Miller, Introduction to Adaptive Ar- 
rays, John Wiley, New York, 1980. 

[8] N.B. Pulsone and M.A. Zatman, "A Computational Efficient 
Two-Step Implementation of the GLRT," IEEE Trans, on Sig- 
nal Processing, vol. 48, no. 3, pp 609-616, Mar. 2000. 

[9] H. Akaike, "A New Look at the Statistical Model Identifi- 
cation," IEEE Trans, on Automatic Control, vol. AC-19, pp. 
716-723, Dec. 1974. 

[10] A.G. Jaffer, "Maximum-Likelihood Angular Resolution of 
Multiple Sources," in Proc. 19thAsilomar Conf. Signals Syst. 
& Comp., pp.68-72, Pacific Grove, CA, Nov. 1985. 

[11] S.Z. Kalson, "Adaptive Array CFAR Detection," IEEE Trans, 
on Aerospace and Electronics Systems, vol. 31, no. 2, pp. 
534-42, Apr. 1995. 

[12] T.F. Ayoub and A.M. Haimovich, "Modified GLRT Signal 
Detection Algorithm," IEEE Trans, on Aerospace and Elec- 
tronics Systems, vol. 36, no. 3, pp. 810-8, Jul. 2000. 

[13] A.G. Jaffer, J.C. Chen, and T.W. Miller, "Generalization of 
GLRT Adaptive Detection to Multiple Targets," to be submit- . 
ted to IEEE Trans, on Aerospace and Electronics Systems. 

54 



SPACE-TIME ADAPTIVE FIR FILTERING WITH STAGGERED PRI 

R. Klemm 

FGAN-FHR, 53343 Wachtberg, Germany 
Tel: ++49 228 9435 377, Fax: ++49 228 9435 618, E-mail: r.klemm@fgan.de 

ABSTRACT 

Space-time least squares FIR filters have proven excellent 
clutter rejection performance at extremely low computational 
load so that ground moving target indication (GMTI) kann 
be carried out in real-time. Staggering the pulse repetition 
interval (PRI) is an appropriate way of avoiding Doppler am- 
biguities and blind velocities. Fully adaptive space-time pro- 
cessors can cope well with staggered echo data. FIR filter- 
ing techniques are based on constant PRI and, therefore, will 
suffer some degradation if the radar pulses are staggered. In 
this contribution the concept of re-adaptation of the FIR filter 
coefficients at each PRI is put forward. It is shown by sim- 
ulations that the total loss caused by staggering the PRI is of 
the order of magnitude of a few dB. However, applying a con- 
stant FIR filter to staggered data results in dramatic losses in 
signal-to-clutter+noise ratio. 

1. INTRODUCTION 

1.1. Preliminaries 

The motion of an air- or spacebome radar causes clutter re- 
turns from the ground to be Doppler shifted. The Doppler 
shift of an arrival from a single scatterer is proportional to the 
cosine of the angle of arrival of the backscattered echo. The 
total of all clutter arrivals results in a Doppler broadband sig- 
nal where the Doppler bandwidth is determined by the plat- 
form velocity. The clutter bandwidth degrades the detectabil- 
ity of slow moving targets. Space-time adaptive processing 
(STAP) has been shown to compensate for the platform mo- 
tion effect so that basically no losses in slow moving target 
detection will occur. 

The basis of STAP techniques is the likelihood ratio (LR) 
test which states that the space-time echoes received by a co- 
herent array antenna have to be multiplied with the inverse 
of the space-time clutter covariance matrix, followed by co- 
herent signal integration using a beamformer and Doppler fil- 
ters. If the number of array elements JV and the number of 
processed echoes M is large the matrix inverse may not be 
available by various reasons: 

• Adaptation means estimation of the clutter covariance 
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 —- shift register 

(space-time 
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--■- 

L- L-L 
echo data) 

;    space-time i-IK niter 1 

:▼ 
iweic imea sum i^ 

Doppler filter bank 
(FFT) 

11   1 • • • M<            1 

I O 
M 

Figure 1: Overlapping subarray processor with space-time 
FIR filter 

matrix. The number of operations required may be pro- 
hibitive if JV and M are large. 

There may be a lack of representative clutter data to 
estimate the covariance matrix. 

The computation of the matrix inverse may be impos- 
sible because of extensive computational load. 

The computation of the matrix inverse may be impos- 
sible due to limited numerical accuracy. 

Implementation of the LR processor requires that all 
elements of the array antenna are cascaded with digi- 
tized channels. This is currently unrealistic by reasons 
of cost. 
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Figure 2: Matrix scheme for space-time FIR filtering, K=4, 
M=5 

1.2. Subspace Techniques 

A lot of publications deal with suboptimum approximations 
(frequently referred to as subspace techniques) of the space- 
time LR processor (e.g. WARD [11], KLEMM [2] GOLD- 

STEIN & REED [4]). 

There are rank reducing techniques which conduct clut- 
ter suppression in the clutter subspace of the space-time co- 
variance matrix while maintaining the order of the order of 
the filter matrix. The eigencanceler type of architectures 
(HAIMOVICH & BAR-NESS [3]) belong to this class. Sav- 
ing of operations is achieved during the adaptation and filter 
calculation phase, however not during filtering the echo data 
at range sample speed. 

Order reduction STAP techniques lead to reduced size ar- 
chitectures which promise a reduction of the computational 
load for adaptation, filter calculation and filterings as well. 
This class of processors has specific aptitude to real-time pro- 
cessing. 

A large class of order reduction architectures are based on 
certain linear transforms. There are space-time transforms, 
spatial transforms and temporal transforms ([2, Chapter 5-7]). 
For large M post-Doppler techniques which operate in the 
Doppler domain may lead to very efficient receiver schemes. 
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Figure 3: Fully adaptive processing, constant PRI 
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Figure 4: FIR filter, based on data from first 5 echoes, con- 
stant PRI 

13. The Space-Time FIR Filter 

7.3.7. The principle 

Space-time FIR filters exploit the stationarity of echo se- 
quences. KLEMM & ENDER [8] analysed a least squares 
space-time filter for GMTI processing in real-time. Related 
approaches have been described by BARANOSKI [10], RO- 

MAN et al. [9] and SWINDLEHURST & PARKER [7]. In the 
concept of GOLDSTEIN & REED [5] several 1-delay subfilters 
are cascaded. 

The space-time least squares FIR filter introduced by The 
use of space-time least squares FIR filters for airborne appli- 
cations introduced in [8] and described in detail in [2, Chapter 
7] has proven to be a highly efficient way of adaptive ground 
clutter suppression for moving radar. The filter is closely re- 
lated to the Maximum Entropy Method (BURG [1]). A block 
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Figure 5: FIR filter, sliding calculation of coefficients, con- 
stant PRI 

Figure 6: Fully adaptive processing, randomly staggered PRI 

diagram of a FIR filter based GMT1 processor is shown in Fig- 
ure 1. Notice thai the spatial dimension has been reduced by 
subdividing the arra> antenna into A' subarrays. If K >C N 
the number of operations for clutter suppression is strongly 
reduced. Further reduction can be obtained by choosing a 
space-time FIR filler with L < M delays. The FIR filter is 
calculated as follows: 

• Choose a segment of L echoes with L < M. 

• Calculate the associated space-time clutter covariance 
matrix. It will be one of the submatrices along the di- 
agonal of the matrix scheme shown in Figure 2. These 
submatrices are denoted as m = 1,2,3. 

• Calculate the inverse of the submatrix. 

• Select the first K x KL block row of the inverse to 

become K. 

• Multiplying a N x 1 beamformer vector b with K re- 
sults in a 1 x KL vector of space-time filter coefficients 
Kb. 

It has been demonstrated that the temporal filter length 
can be chosen independently of the coherent processing inter- 
val M (CPI). This is a desirable property, particularly when 
the filter is used in a multi-mode radar where the CPI varies 
with different operational modes. Even with very low filter di- 
mensions (e.g., K = L = 3, total number of coefficients: 9) 
excellent approximation of the performance of the optimum 
processor can be achieved. 

1.3.2. Mathematical description 

The first column of the inverse of a Toeplitz matrix is called 
a prediction error filter. It has the property of minimizing 
the output power of a stationary process determined by the 
Toeplitz covariance matrix. The inverse of the space-time co- 
variance matrix Q has the same form as Q: 

K21 

K = Q-1 = 

K12 

K22 

^ KMI    KM2 

K2M 

KMM / 

(1) 

Let us consider now a small segment of L echoes out of M 
where by L we denote the temporal filter length. We assume 
that L < M. Recall that the submatrices Kj* are spatial, that 
means, they are related either the antenna array (JV x N) or 
the subspace given by the antenna channels (K x K). 

Then the order reduced space-time covariance matrix be- 
comes 

/ Ku 
K21 

K = Q-1 = 

K12 

K22 

\ KU    Kx,2 

K1L \ 
K21, 

KiL  / 

(2) 

where L is the temporal dimension of the space-time FIR fil- 
ter. Assuming for instance K = 3 and L = 3 this matrix has 
the dimensions 9x9. The space-time prediction error filter is 
the first block column of K 

/ Ku 
K21 

K = (3) 

VKL1 J 
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The FIR filter operation can be formulated as follows 

y = H* 

x2 

\ xM / 

(4) 

where 

/KIi K 

H* = 
0*     KJX 

ii 

0«     K*x 

KL 
K'L1    0- 

V y 
(5) 

is a shift operator, 0 is a K x K zero matrix. The spatial di- 
mension of the FIR filter can be removed by pre-beamf orming 

h = Kb 

so that the filtering operation can be written as 

(6) 

z* = H*x = H* 

/n\ 
x2 

\ XM  / 

(7) 

where 

H* = 

(hi    ... 
o*    hi 

o* K 
K 

K o* 

V 
(8) 

=   / 
with o being a AT-dimensional zero vector and xm is the sig- 
nal vector at the array outputs at time m. Notice that z is 
temporal only with the dimension M - L + 1 while the di- 
mension of the space-time vector y was (M — L + 1) x K. 
The processor is completed with a Doppler filter bank with 
Doppler filters of length M — L + 1 whose output signals are 
obtained as 

d = Fz (9) 

where the matrix F describes the Doppler filter bank, for in- 
stance, the DFT. The elements of d are fed into a detection 
device. 

The improvement factor in SCNR becomes 

IFl    ) = s'^lHH'sMs'MHH'sM - fr(Q) 
s*k)HH*QHH«sM-s'Ms(Ui) 

(10) 
where we made the usual assumption that the processor is 
perfectly matched to the target signal vector and uid means 

Doppler frequency. In the discussion below we use the 
IF(u}d) to judge the efficiency of processing and the effect 
of parameters. Instead of IF(ud) we show IF(F) where 
F = WdlfaPRF) is the normalized Doppler frequency. 

2. STAGGERED PRI RADAR 

2.1. General Aspects 

The PRF is commonly chosen constant which, however, has 
a couple of drawbacks 

• The target Doppler cannot be estimated unambigu- 
ously. 

• The clutter filter produces ambiguous notches at the 
blind velocities. 

• The PRF can estimated by hostile ESM (electronic sup- 
port measure) and countered with spot jamming. 

Alternatively one may either stagger the PRF or the PRI. PRF 
staggering has the disadvantage that several pulse bursts have 
to be transmitted which means a waste of radar energy. This 
problem is circumvented by PRI staggering (it has the little 
drawback that the FFT algorithm cannot be used as Doppler 
filter bank). 

The effect of PRI staggering for use with STAP has been 
discussed in [6]. It was demonstrated that the optimum (LR) 
processor can cope well with staggered PRI, provided that the 
Doppler filters are matched to the staggered pulse sequence. 

2.2. FIR Filtering with Staggered PRI 

Now the question arises how an extremely efficient clutter fil- 
ter technique such as the adaptive space-time FIR filter can 
operate with staggered PRI. Staggering the transmit pulses 
means that the received echo sequence is no longer station- 
ary. Recall that the efficiency if the adaptive FIR relies on 
stationary data sequences. 

Stationarity of the echo sequence means that the space- 
time submatrices (m = 1,2,3) in Figure 2 are equal. If the 
pulse sequence is staggered these matrices are different. A 
straight forward approach to cope with this non-stationarity 
is to readapt the filter at each PRI. That means, at each PRI 
the space-time submatrix is estimated anew. Then we obtain 
a space-time FIR filter with time-varying coefficients. 

The adaptation of the FIR filter with each PRI causes ad- 
ditional expense in terms of computations. This is, however, 
tolerable, because the FIR filter is based on a small number of 
coefficients. Therefore, the associated time-depending subco- 
variance matrix is very small and needs only very few clutter 
echo samples for estimation. These can easily been taken at 
each PRI from the received range samples. 
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Figure 7: FIR filter, constant coefficients, randomly staggered 
PRI 

Figure 8: FIR filter, sliding calculation of coefficients, ran- 
domly staggered PRI 

similar to the one in Figure 3, however, with slightly broad- 
ened and deeper clutter notches. In Figure 5 we applied the 
principle of re-adaptation on echo data with constant PRF. 
Then the filter coefficients are calculated from the different 
submatrices (m = 1... 3). As can be noticed Figure 5 is 
identical to Figure 4. The reason is obvious: For constant 
PRF the echo sequence is stationary, and the submatrices are 
identical. 

Let us now introduce a pseudorandom stagger code. Fig- 
ure 6 shows again the behaviour of the optimum LR proces- 
sor. As can be seen there is only one clutter notch left. The 
ambiguities do not show up anymore. 

Applying a space-time FIR filter with constant coeffi- 
cients leads to an IF curve as shown in Figure 7. There is 
only one clutter notch, however, due to the mismatch of the 
constant filter to the stagger pattern we obtain heavy losses in 
the passband of the filter. A FIR filter with sliding computa- 
tion of the filter coefficients yields an IF curve as shown in 
Figure 8. We notice that except for a loss of a few dB a good 
filter characteristics is obtained. 

4. CONCLUSIONS 

Space-time least sqares FIR filters are a highly efficient way 
of clutter rection in air- or spaceborne radar. Radar opera- 
tion with staggered PRI may be an attractive feature of air- 
borne pulse-Doppler radars, with the potential of unambigu- 
ous Doppler estimation and avoidance of blind velocities. The 
optimum STAP processor as suggested by the likelihood ratio 
test can cope well with instationarities of the received echo 
sequence caused by PRI staggering. FIR filters with constant 
coefficients are by nature based on stationary echo sequences. 
Such filters, however, can be applied to staggered echo se- 
quences if the filter is re-adapted with every PRI. It is shown 
by numerical examples that the time-varying space-time FIR 
filter can operate well on staggered echo data. The penalty for 
staggering is a loss in signal-to-clutter ratio of a few dB. 

3. NUMERICAL EXAMPLES 

The principle of clutter FIR filtering with time-varying coeffi- 
cients is illustrated in Figures 3-8. As example, a sidelooking 
radar with linear array antenna was assumed. The look direc- 
tion is perpendicular to the flight path, i.e., broadside. 

Figure 3 shows the improvement factor in signal-to clut- 
ter+noise ratio versus the normalized target Doppler fre- 
quency. The PRF is constant and has been chosen so that 
ambiguous clutter notches show up in the clutter band (PRF= 
4xNyquist of the clutter band). The primary clutter notch is 
at F = 0, The other notches are repetitions due to Doppler 
ambiguity. 

The same kind of IF plot has been calculated for the 
space-time FIR filter as given by Figure 4. The curve is quite 

5. REFERENCES 

[1] Burg, J. P., "Maximum Entropy Spectral Analysis", in: 
Proc. NATO Advanced Study Institute, Enschede, Nether- 
lands, 1968 

[2] Klemm, R., Space-Time Adaptive Processing - Principles 
and Applications (EEE, London, UK, 1998) 

[3] Haimovich, A. L., Bar-Ness, Y, "An Eigenanalysis Inter- 
ference Canceler", IEEE Trans. Signal Processing, Vol. 
39, No. 1, January 1991, pp. 76-84 

[4] Goldstein, J. S., Reed, I. S., "Theory of Partially Adaptive 
Radar", IEEE Trans. AES, Vol. 33, No. 4, October 1997, 
pp. 1309-1325 

[5] Goldstein, J. S., Reed, I. S., Scharf, L ., "A multistage 
representation of the Wiener filter based on orthogonal 

59 



projections", IEEE Trans. IT, Vol. 44, No. 7, November 
1998, pp. 2943-2959 

[6] Klemm, R., "STAP with staggered PRF', RADAR '99,17- 
21 May 1999, Brest, France 

[7] Swindlehurst, A. L., Parker, P., 'Tarametric clutter re- 
jection for space-time adaptive processing", ASAP 2000 
Workshop, , MIT LL, Lexington, USA, 13-14 March 
2000, pp. 7-12 

[8] Klemm, R., Ender, J., "New Aspects of Airborne MTI", 
Proc. IEEE Radar 90, Arlington, USA, 1990, pp. 335- 
340 

[9] Roman, J. R., Rangaswamy, M., Davis, D. W., Zhang, Q., 
Himed, B., Michels, J. H., "Reduced rank STAP perfor- 
mance analysis", IEEE Transactions AES, Vol. 36, No. 2, 
April 2000, pp. 677-692 

[10] Baranoski, E. J., "Improved Pre-Doppler STAP Algo- 
rithm for Adaptive Nulling in Airborne Radars", IEEE 
Proc. 29th ASILOMAR Conference on Signals, Systems 
and Computers, Pacific Grove, USA, 30 Oct.-2 Nov. 
1995, pp. 1173-1177 

[11] Ward, J., "Space-Time Adaptive Processing for Air- 
borne Radar", Technical Report No. 1015, Lincoln Labo- 
ratory, MIT, December 1994 

60 



PARAMETRIC FILTERS FOR NON-STATIONARY 
INTERFERENCE MITIGATION IN AIRBORNE RADARS 

Peter Parker and A. Lee Swindlehurst 

Dept. of Electrical & Computer Engineering 
Brigham Young University 

Provo, UT 84602 
{parkerp, swindle}@ee.byu.edu 

ABSTRACT 

Multichannel parametric filters are currently being studied as 
a means of reducing the dimension ofSTAP algorithms for in- 
terference rejection in airborne pulsed-Doppler radar systems. 
These filters are attractive to use due to the low computational 
cost associated with their implementation as well as their near 
optimal performance with a small amount of training data for 
a stationary environment However, these filters do not perform 
well in certain types of non-stationary environments. This pa- 
per presents two modifications to the Space-Time AutoRegressive 
(STAR) filter that we previously proposed. The first modification 
is based on the Extended Sample Matrix Inversion (ESMI) tech- 
nique and is used in the presence of range varying clutter which 
arises from the use of non-linear antenna arrays orbistatic radar 
systems. The second modification to the STAR filter is for use in 
the presence of hot clutter and is a three-dimensional STAP al- 
gorithm. Using a realistic simulated data set for circular array 
STAP, we show that the modifications to the STAR filter improve 
the performance when in the presence of the non-stationary in- 
terference. 

1. INTRODUCTION 

The use of space-time adaptive processing (STAP) for airborne 
radar interference mitigation is usually limited by the lack of sta- 
tionary secondary data used for training the filter. This problem 
is made worse when the radar platform is operating under circum- 
stances that lead to additional non-stationary components to the 
interference. Such circumstances include the use of a non-linear 
or non-side-looking array which leads to a range variation of the 
clutter statistics or the presence of an airborne jamming source 
which leads to hot clutter or terrain scattered interference. 

Partially adaptive STAP filters alleviate this problem to a de- 
gree by taking advantage of the low-rank nature of the clutter. 
The partially adaptive STAP filters use fewer degrees of freedom 
and therefor need fewer training samples than the fully adaptive 
STAP filter. One such partially adaptive STAP filter that is dis- 
cussed in this paper is the Space-Time AutoRegressive (STAR) 
filter [1]. The partially adaptive STAP filters offer an improve- 
ment over the fully adaptive STAP filter but are still derived based 
upon the assumption that the interference is stationary. When the 
non-stationary component of the interference follows a specified 

This work was supported by the Office of Naval Research under con- 
tract N00014-00-1-0338. 

model, this model may be taken into account to derive a filter to 
cancel the non-stationary interference. A few partially adaptive 
STAP algorithms have been derived to account for range-varying 
interference [2] and hot clutter [3]. 

Parametric filters (such as the STAR filter) have been shown to 
achieve near optimal performance with a small amount of training 
data when the interference is stationary [4]. However, the perfor- 
mance when the interference is non-stationary leaves much room 
for improvement In this paper, two extensions of the STAR fil- 
ter to account for both range-varying interference and hot clutter 
are presented. The improvements that the range-varying Extended 
STAR (ESTAR) filter offers over the standard STAR filter is illus- 
trated with a synthetic data set generated by MIT Lincoln Labora- 
tory that simulates the output of a 20 element antenna array whose 
elements lie along a circular arc of 120° [2]. This ESTAR filter 
is also shown to have better performance than a range-varying ex- 
tended post-Doppler algorithm. 

The three-dimensional STAR filter used to mitigate hot clutter 
is tested using the same data set as above augmented with syn- 
thetic hot clutter. The 3D-STAR filter achieves a significant im- 
provement in signal-to-interference plus noise ratio (SINR) over 
the standard STAR approach. In comparing the 3D-STAR filter to 
a three-dimensional optimized pre-Doppler algorithm, it is shown 
that the performance of the two filters are nearly the same but that 
the 3D-STAR filter has a narrower clutter notch. This narrow clut- 
ter notch allows for improved detection of slowly moving targets. 

In the next section, we briefly present the standard data model 
used for STAP problems and introduce the notation used through- 
out the paper. The STAR filtering technique is described in Section 
3 as a background for the extensions presented herein. Section 4 
presents the range-varying extended STAR filter that is used when 
the clutter statistics are range-varying. Section 5 derives a 3D- 
STAR filter used for the mitigation of hot clutter and Section 6 
shows the results of several numerical simulations of the filters. 

2. DATA MODEL 

A target present in a particular range bin during some coherentpro- 
cessing interval (CPI) may be modeled as producing the following 
baseband vector signal (after pulse compression and demodula- 
tion) [5]: 

Mt) ^b&{eyut +ne(t) € C",        t = l,---,JV,     (1) 

where I is the range bin in which the target is located, b is the 
complex amplitude of the signal, w is the Doppler shift due to the 
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relative motion between the array platform and the target, a(0) is 
the response of the array to a unit amplitude plane wave arriv- 
ing from direction 0 (azimuth and elevation angles), and nt(t) 
contains contributions from clutter, jamming, and thermal noise. 
In (1), we are assuming an array of m elements and a total of TV 
transmitted pulses covering R range bins. 

If we stack the N array outputs into a single mN x 1 space- 
time snapshot, we may re-write (1) as 

where 

(2) Xi = = bs(6,u) + T) 

v(w)    = 

v(w)® 

[ 1    ej 

a(0) 

V    =    [n(l)1 »W3 

and ® represents the Kronecker product The vector r)i contains 
the stacked vector samples of the clutter and interference for range 
bin I, and has an unknown covariance matrix denoted by 

The clutter is neither temporally nor spatially white; in fact, the 
rank of R is typically much less than mN. The rank (p) of R is 
important because it determines how many secondary data sam- 
ples are required to accurately estimate R. According to [6], the 
number of required samples is on the order of 2p to 5p. The fully 
adaptive approach to whitening this type of data is to multiply the 
data by the inverse square-root of an estimate of the matrix R. Be- 
cause the size of this matrix can become quite large, its low rank 
nature is exploited to derive reduced-dimension whitening algo- 
rithms. The next section summarizes the work in [1] as a back- 
ground for extending the STAR filter. 

3. SPACE-TIME AUTOREGRESSIVE FILTERING 

Following the derivation in [1], the STAR approach assumes that a 
set of L matrices Ho, Hi, - • -, Hz,_i of dimension m' x m exist 
that satisfy 

L-l 

53Hin(< + i) = 0,    t = l,--,N-L + l,        (3) 
»=o 

for the interference and clutter in the primary range bin. We may 
also write (3) in the following two different ways: 

n(l) 

L n(i) 

n(N - L + 1) 

n(iV) 

where 

W = 

Ho    •••    HL_! 

Ho      - - -      Hi-i 

Ho HL 

(5) 

-   (6) 

In cases where the clutter is stationary, we assume that equations (4) 
and (5) also hold for the secondary data as well: 

H'Nfc    =    0 

n*T)k    =    0, 
(7) 
(8) 

for A: = 1, - • •, Ns, where Ns is the number of secondary data 
snapshots used to train the filter. 

The matrix U is mNxm'(N-L+l). If (3) holds and m' and 
L are chosen so that m'(N — L +1) is large enough, the columns 
of "H form a basis for the space orthogonal to the clutter and in- 
terference subspace. Although this relationship does not hold in 
practice due to the presence of thermal noise, a least squares so- 
lution is applied to approximate the subspace. This suggests the 
following space-time filter (similar to the matched subspace detec- 
tors in [7]) be used for interference rejection: 

WA*(0,W) = P*S(0,W), (9) 

where P-H is the projection onto the columns of H: 

~PH=H{H"U)-1n' (10) 

We refer to the implementation of STAP with the weight vector 
of (9) as Space-Time AutoRegressive (STAR) filtering. The STAR 
filter weights are "adaptive" in the sense that H must be estimated 
from the secondary data prior to computation of W^ä. 

4. RANGE-VARYING EXTENDED STAR FILTER 

The STAR filter of the previous section is not designed to han- 
dle non-stationary interference of any kind. This section derives a 
STAR-based filter that assumes the clutter statistics vary linearly 
with range. This assumption is reasonable if the training region is 
kept short. The idea of using time-varying weights in a STAP algo- 
rithm was introduced in [8] as an extended sample matrix inversion 
algorithm and this idea was used for range-varying STAP weights 
in [2]. This technique increases the dimension of the problem by 
a factor of two but does improve the performance when there is a 
rapidly changing clutter locus. 

The idea behind range-varying weights is that the weight vec- 
tor is a function of range (r) to account for the non-stationary clut- 
ter locus. Expanding the weight vector into a power series yields 

/ ^                 .       r2w„ 
w(r) = w„ + rw0 -I 1- • • 01) 

The assumption is made that the clutter locus is changing slowly 
enough that for a given collection of ranges the weight vector is 
linear in r. Ignoring the higher order terms in the Taylor series, 

= 0    (4) the weight vector as a function of the kth range bin becomes 

Wfc = w„ + afcAwo, (12) 

where a is a normalization constant. Defining 

Aw 

the output of the filter may be written as 

(13) 

(14) 
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where Xk is the extended data vector. 
Using this same idea for the STAR filter (i.e., assuming that 

the STAR filter coefficients that null the clutter vary linearly with 
range) we can rewrite (3) using an extended data vector 

L-l 

J2 [ H,    AH{ 
i=0 

(15) 
Letting AH and AH be defined similar to H in (4) and H in (6) 
we may rewrite (7) and (8) as 

[ H*    AH* ] 

[ W    AH' ] 

afcNfc 

afcjft 

(16) 

(17) 

The filter parameters H and AH may then be estimated using the 
left null space of the matrix 

x= -aQN-Q (18) 

where Q = ^-. Following what was done in [2], the constant a 
is chosen as 

12 
(Ns + 2)(JV, + 1) 

to yield a "flat" noise subspace. 
To define what the weight vector is, let 

H = 
H 

AH 

so that 

wc(0.-;)    =    Pi 
s(6,w) j 

(19) 

(20) 

(21) 

Filtering the extended data vector with (21) is referred to as the 
Extended STAR (ESTARI filter When estimating a range varying 
weight vector using data that also varies with range, a higher num- 
ber of training vector, may be used before performance starts to 
degrade. 

5. STAR FILTERING FOR HOT CLUTTER 

When the radar platform is operating in an environment where 
there is an airborne jamming source present, two main considera- 
tions must be made First, the hot clutter covariance changes from 
pulse to pulse and second, the hot clutter has non-zero correlations 
across range bins [3] This section derives a STAR based filter 
that is effective in canceling hot clutter. The baseline STAR filter 
is first modified to handle any type of interference that changes 
from pulse to pulse (as with intrinsic clutter motion) and then an 
additional dimension is added to the vector autoregressive filter to 
account for the correlations across range bins. 

The model for the clutter in (3) is no longer valid since the spa- 
tial covariance changes from pulse to pulse. If the standard STAR 
model is used in a non-stationary environment like hot clutter, it 
tries to account for the time variations in the data by increasing 
the number of filter taps required to achieve clutter cancelation. 

A better model for this is to let the coefficients of the space-time 
prediction error filter change with time: 

HTV = 

Ho(l) Ht-i(l) 

Ho(n) Hi-i(n) 
(22) 

where n = N — L + 1 and where each block row is a set of 
new coefficients based on dropping the data from the oldest pulse 
and adding the data from the most recent pulse. For this time- 
varying STAR filter, a greater number of filter parameters must be 
estimated (n times the degrees of freedom required for the standard 
STAR algorithm) and therefore, more sample support is required 
to train the filter. 

To complete the derivation of the 3D-STAR filter, a few defi- 
nitions need to be made. To clarify the notation, sampling across 
pulses is called slow-time sampling and sampling across range 
bins is called fast-time sampling. Let P be the number of fast- 
time samples over which the hot clutter is correlated. 

In order to utilize the fast-time correlation of the data, an extra 
dimension is added to the STAR filter. We assume for a moment 
that the interference is stationary across the pulses (slow-time). 
This filter will model the fast-time and slow-time correlations with 
a two-dimensional VAR filter. For a set of LJ matrices of size 
M' x M, assume that the clutter obeys the model 

j-ii-i 

££H*jn*.M(t + 0 = 0,    t = l, — ,N-L + l 
j=0 i=0 

* = 1,---,P-J+1, (23) 

where k = 0 is the range bin of interest and n*(*) is the spatial 
snapshot for the tth pulse and the kth range bin. This may also be 
expressed as 

j-i 

£ft*eit+i=0   k = l,---,P-J + l, (24) 
j=o 

where Hj is the matrix defined in (6) with a subscript j to indicate 
which fast-time sample it is associated with. From this point we 
again take into account the slow-time variations caused by the hot 
clutter by replacing Hj with the slow-time varying filter HTV,J ■ 

Rewriting this sum with the time-varying filter we get 

ET»j3d(fc) = 0, (25) 

where 

Jferj(k)    = 

BT    = 

*)k 

Vk+P-l 

HTV.O W-TV,J-1 

HT\ HT\ 

Assuming that there is target energy in the k = 0 range bin, then 
there will also be target energy in the vectors J/3d(0), Jj3d(—1), 
• • •. V3ä {—P + 1) which may not be used for training the filter. In 
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order to define the algorithm to find the filter coefficients let 

H(t)*    =    [ Ho,o(t)    •••    Hi-i.j-iG) ] (26) 

n»(t) 

»(«)    = 

&«    = 
g*+p-j(i) 

g*+J-l(*)     ••■     g*+P-l(<) 

G(<) = [ ßx(*) ••• gN.(t) }■ 

(27) 

(28) 

(29) 

The filter coefficients can then be found by the following least 
squares criterion: 

H(t) = arg min H(f)*G(<)        t = 1, • • •, N - L +1 (30) 
H(t) II IIF 

subject to the constraint that H(*)*H(i) = I. From this point 
the m' left singular vectors corresponding to the smallest singular 
values of each G (*) matrix will be used to compute the JV—L+1 
sets of filter coefficients which define EL With a defined subspace, 
a weight vector for mitigation of hot clutter is 

W3D(0,W) =FBS3D(9,U>), 

where 

S3D(0,CI>) : ®s(0,u>). 

(31) 

(32) 

This 3D-STAR filter will require more training data than the STAR 
filter (on the order of JV — L + 1 times more) due to the non- 
stationary prediction error filter that is used in the implementation. 
This additional sample support requirement is less of an issue than 
with other 3D implementations because the STAR approach typ- 
ically requires much less secondary data for good performance. 
The 3D-STAR filter also assumes that the data is stationary for P 
fast-time samples. 

6. NUMERICAL RESULTS 

The algorithms presented herein are tested using a data set created 
by MIT Lincoln Laboratory that simulates the output of a 20 ele- 
ment array. These elements lie along a circular arc of 120° with 
radius 2.96m and are assumed to have a cosine-shaped response 
with a -30 dB backlobe for both azimuth and elevation dimensions. 
The airborne platform is moving with a velocity of 100 m/s above 
a 4/3 eath model at an altitude of 9000m. The operating frequency 
of the radar is taken to be 435 MHz, the radar bandwidth and sam- 
pling frequency are 3.75 MHz, the pulse-repetition frequency is 
300 Hz, and JV = 18 pulses are assumed to be transmitted dur- 
ing one CPI. Data are generated for 9325 range gates between 20 
and 400 km with a clutter-to-white-noise power ratio of 40 dB at a 
range of 100km. 

Hot clutter is included in the data by adding a term of the form 

j*    =    bj 

where bj is the amplitude of the jammer, 

i 
c*(t)    =    a.{6j)zk + YJH^k-i 

t=i 

is the contribution of the hot clutter for a single pulse at range k, 
£ is the longest multipath delay, 6j is the direction of arrival of the 
jammer signal, z* is the jammer waveform (white in both slow and 
fast-time), and bt is a random vector that approximates the sum of 
the spatial steering vectors for each of the multipath signals. When 
present, the jammer-to-clutter power ratio is assumed to be 10 dB. 
When secondary data are used to estimate the clutter covariance or 
STAR filter parameters, equal amounts of data from range bins on 
either side of the target range bin are used. 

The true clutter covariance matrix used to generate the data 
is known for 20 of the 9325 range bins, and thus the maximum 
achievable SINR can be calculated at these ranges. To illustrate 
the performance of the algorithms we use either the SINR loss 
as a function of Doppler for an azimuth of 0° or the "average" 
SINR loss as compared with the optimal (known covariance) so- 
lution. This average SINR loss is defined as the area between the 
algorithm's SINR curve and that achievable assuming R is known. 
This is depicted in Figure 1. The ESTAR filter will be compared 
to the range-varying extended post-Doppler PRI staggered STAP 
algorithm [2] and the 3D-STAR algorithms will be compared with 
the optimized 3D pre-Doppler STAP algorithm [3]. For the STAR 
based filters, M' = 20 is used for all the examples and for the 
partially adaptive STAP algorithm, three pulses at a time are pro- 
cessed and a diagonal loading of about five times the noise level is 
used for sample matrix inversion. 

A performance evaluation of the ESTAR filter at a range of 
20km is shown in Figures 2 and 3. Figure 2 compares the perfor- 
mance of the ESTAR filter and the basic STAR filter as a function 
of L for Ns = 50 (2km training window). This figure shows 
that the ESTAR filter does perform better than the STAR filter at 
close ranges. We also see that the ESTAR filter requires fewer fil- 
ter taps than the STAR filter thus offsetting some of the additional 
computational cost associated with the extended implementation. 
Figure 3 compares the performance of the STAR filters with the 
range-varying extended PRI staggered and fully adaptive STAP 
algorithms as a function of training length. Note that the perfor- 
mance of the STAR algorithm degrades quickly as more training 
data is used. The extended PRI STAP and ESTAR filters both have 
nearly flat performance as TV« is increased due to the range-varying 
weights. The ESTAR filter also has much better performance than 
the extended PRI STAP algorithm because it requires much less 
training data to converge to its best performance. 

Another aspect of performance is the computational load re- 
quired to implement the algorithms. For the STAR algorithms the 
implementation is broken up into two steps. The first step involves 
taking the SVD of the 2ML x (N - L + 1)JV, data matrix Sf 
and the second is forming the projection operator. The bulk of the 
computation involved in this second step is finding the inverse of 
W"H which is usually a sparse banded matrix. Taking this into 
account the computational load for the ESTAR algorithm is 

0(4(ML)2(iV -L + l)N,) + 0((Af£)2(JV -L + 1)M')- 

For the parameters of the circular array data with L = 4 and M' = 
20, the computational cost is 

ESTAR = 0(3.84 x 105N.) + 0(1.92 x 10s). 
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Comparing this with the cost of the STAR filter (at L = 5): 

STAR   =   0{(MLf(N - L + 1)N,) 
+0((Af£)2(JV - L + 1)M') 

=   0(1.4 x 105JV„) + 0(2.8 x 106) 

the ESTAR algorithm has only a small increase in computational 
load. The extended PRISTAP algorithm has a computational cost 
of 

EPRISTAP    =   0(4(MK)2(N-K + 1)N3) 
+0(4(Müf)2(JV - K + l)p) 

=   0(2.3 x lO5^) + 0(2.0 x 107) 

where K = 3 pulses that are processed at a time and p = 90 is the 
approximate rank of each sub-CPI. From this we see that if N„ is 
not too big (Ns < 100), then the ESTAR algorithm requires much 
fewer computations than the PRI-staggered STAP algorithm. 

Figures 4-6 illustrate the performance of the 3D-STAR filter 
when there is hot clutter present and when the direct path jamming 
signal is in the mainbeam of the radar system. Figure 4 compares 
the performance of the 3D-STAR filter to the basic STAR filter 
as a function of L. The 3D-STAR filter outperforms the STAR 
filter with a small number of filter taps by utilizing the slow-time- 
varying taps as well as the additional fast time tap. Figure 5 com- 
pares the STAR filters to the 3D optimized pre-Doppler and fully 
adaptive STAP algorithms as a function of training data. In this 
case the pre-Doppler and 3D-STAR algorithms have a very similar 
performance with the pre-Doppler algorithm slightly outperform- 
ing the 3D-STAR filter. However, Figure 6, which shows the SINR 
at Ns = 80 or 3.2 km, illustrates that the 3D-STAR filter has a 
narrower clutter notch which results in a lower detectable veloc- 
ity. If the small loss in performance away from the clutter notch 
is tolerable, the 3D-STAR filter is more desirable due to its greater 
percentage of usable Doppler space. 

The computational cost of the STAR (L = 7), 3D-STAR (L = 
2, J = 2), and 3D-pre Doppler (K = 3 pulses) algorithms for the 
system parameters described above are as follows: 

STAR   =    0(2.35 x 105iV<,) + 0(4.7 x 106) 

3D-STAR    =    0{(MLJ)2(N-L + \){P- J + l)Ne) 
+0{{MLJ)2(N -L + 1)(P - J + \)M') 

=    0(2.18 x lO5.^) + 0(4.35 x 106) 

pre-Dopp    =    0{iMKPf{N-K + \)Ns) 
+0((MKP)2(N -K + l)p) 

=    0(5.18 x 105JV3) + 0(7.0 x 107) 

where p = 135 is the approximate rank of the sub-CPI covariance 
matrix. Again we see that the STAR and 3D-STAR algorithms 
have nearly the same computational cost when the filter orders 
are chosen close to the best value. It is also seen that the pre- 
Doppler algorithm requires a large number of computations when 
compared with the 3D-STAR algorithm. 

7. CONCLUSIONS 

This paper has presented modifications to the space-time autore- 
gressive (STAR) filter for two types of non-stationary interference. 

The first modified filter (ESTAR) is used when the clutter statistics 
are varying with range as is the case for non-linear antenna arrays 
or bistatic radar systems. The second modification (3D-STAR) is 
used in the presence of hot clutter which arises when an airborne 
jamming source is present These two modifications provide an 
increase in performance over the standard STAR filter when used 
in non-stationary environments without a major increase in com- 
putational burden. We have shown in numerical experiments and 
computational analysis that the ESTAR filter is superior to the ex- 
tended PRI-staggered post-Doppler STAP algorithm when there is 
a rapidly changing clutter locus. We have also shown that the 3D- 
STAR filter has a little more usable Doppler space than the 3D op- 
timized pre-Doppler STAP algorithm and the 3D-STAR algorithm 
achieves mis performance with much less computation. 
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Figure 1: Definition of average SINR loss for a particular algo- 
rithm. 

Figure 4: Performance of STAR filters as a function of filter order 
with hot clutter present. 
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Figure 2: Performance of ESTAR and STAR at 20 km as a function 
of filter order. 
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Figure 6: SINR of 3D-STAR and pre-Doppler algorithms with 
Ns = 80 and hot clutter present. 
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ABSTRACT 

We develop parametric modeling and estimation 
methods for STAP data based on the results of 
the 2-D Wold-like decomposition. We show that 
the same parametric model that results from the 
2-D Wold-like orthogonal decomposition naturally 
arises as the physical model in the problem of space- 
time processing of airborne radar data. We ex- 
ploit this correspondence to derive computation- 
ally efficient parametric fully adaptive and partially 
adaptive detection algorithms. Having estimated 
the parametric models of the noise and interference 
components of the field, the estimated parameters 
are substituted into the parametric expression of 
the covariance matrix to obtain an estimate of the 
interference-plus-noise covariance matrix. Hence 
the fully-adaptive weight vector is obtained. More- 
over, it is proved that it is sufficient to estimate 
only the spectral support parameters of each inter- 
ference component in order to obtain a projection 
matrix onto the subspace orthogonal to the inter- 
ference subspace. The proposed partially adaptive 
parametric processing algorithm employs this prop- 
erty. The proposed parametric interference mitiga- 
tion procedures can be applied even when only the 
information in a single range gate is available, thus 
achieving high performance gain when the data in 
the different range gates cannot be assumed sta- 
tionary. 

1.  INTRODUCTION 

We propose a new approach for parametric modeling and 
estimation of space-time airborne radar data, based on the 
2-D Wold-like decomposition of random fields. The goal of 
space-time adaptive processing is to manipulate the avail- 
able data to achieve high gain at the target angle and 
Doppler and maximal mitigation along both the jamming 
and clutter lines. Because the interference covariance ma- 
trix is unknown a priori, it is typically estimated using sam- 
ple covariances obtained from averaging over a few range 
gates. Next, a weight vector is computed from the inverse 
of the sample covariance matrix, [l]-[5]. In [8], an approach 

that bypasses the need to estimate the covariance matrix 
was presented: The data collected in a single range gate 
was employed to obtain a least squares estimate of the sig- 
nal power at each hypothesized DOA, through evaluation 
of a weight vector constrained to null the unknown inter- 
ference and noise. In [9] a simple ad-hoc model of the clut- 
ter signal and covariance matrix is proposed. The model 
represents the spectral density of the clutter as a sum of 
Gaussian-shaped humps along the support of the clutter 
ridge. In [10] this model is employed to estimate the clut- 
ter covariance matrix from the data observed in a single 
range gate. 

In this paper, we suggest to adopt the 2-D Wold-like de- 
composition of random fields, [6], as the parametric model 
of the observed data. Employing this model, we derive 
computationally efficient algorithms useful for parametri- 
cally estimating both the jamming and clutter fields. The 
estimation procedure we propose is capable of producing es- 
timates of the interference signals parametric models even 
from the information in a single range gate. Hence, no av- 
eraging over a few range gates is required, achieving high 
performance gain in the practical case when the data in the 
different range gates is non-stationary. Having estimated 
the interference terms parametric models, their covariance 
matrix can be evaluated based on the estimated parame- 
ters. Moreover, the problem of evaluating the rank of the 
low-rank covariance matrix of the interference is solved as a 
by-product of obtaining the parametric estimates of the in- 
terference components. Once the parametric models of the 
interference components have been estimated, several alter- 
native detection procedures are available. In this paper we 
present two such methods: the parametric fully-adaptive 
processing, and the parametric partially-adaptive process- 
ing. 

2.  THE RANDOM FIELD MODEL 

In this section we shall briefly describe the 2-D Wold-like 
decomposition of random fields, [6]. Let {y(n, m)}, (n, m) € 
Z2, be a complex valued, regular, homogeneous random 
field. Then, y(n,m) can be uniquely represented by the 
orthogonal decomposition 

j/(n, m) = w(n, m) + v(n, m) (1) 

This work supported by the Air Force Office of Scientific 
Research under Grants F49620-99-1-0067 and F49620-00-1-0083. 

The field {v(n,m)} is a deterministic random field.   The 
field {w(n, TO)} is purely-indeterministic and has a unique 
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Figure 1: RNSHP support; example 
with a = 2 and ß=\. 

white innovations driven moving average representation, 
given by 

w(n, m) =     ^P     b(k, i)u(n - 
(0,0)^(*,<) 

k,m-£) (2) 

where £(0>0)_<(M) ^*) < ^ ^°'°> = X> a"1«1 {«*("> m)> 
is the innovations field of {y(n, TO)}. The notation < implies 
that the summation is performed over all the samples that 
are in the "past" of the (n, TO) sample, where the past is 
defined with respect to any selected choice of NSHP total- 
ordering on the 2-D lattice. (See, for example, Fig. 1.) 
It is possible to define, [6], a family of NSHP total-order 
definitions such that the boundary line of the NSHP has a 
rational slope. Let a and ß be two coprime integers, such 
that a ^ 0. The angle 9 of the slope is given by tan 6 = 
ß/a. (See, for example, Fig. 1.) A NSHP of this type is 
called rational non-symmetrical half-plane (RNSHP). For 
the case where a = 0 the RNSHP is uniquely defined by 
setting ß = 1. (For the case where ß = 0 the RNSHP is 
uniquely defined by setting a = 1.) We denote by O the 
set of all possible RNSHP definitions on the 2-D lattice, 
(i.e., the set of all NSHP definitions in which the boundary 
line of the NSHP has a rational slope). The introduction 
of the family of RNSHP total-ordering definitions results in 
the following countably infinite orthogonal decomposition 
of the deterministic component of the random field: 

v(n, m) = p(n, m)+   ]P   e(0lis) (n, m) 
(a,/S)€0 

(3) 

The random field {p(n, m)} is called half-plane determinis- 
tic. The field {e(Q„8)(n,m)} is the evanescent component 
that corresponds to the RNSHP total-ordering definition 
(a,ß)€0. 

Hence, if {y(n, TO)} is a 2-D regular and homogeneous 
random field, then y(n, m) can be uniquely represented by 
the orthogonal decomposition 

y(n, TO) = w(n, TO) + p(n, TO) ■ ■   Yl   eC°.«(n'm) •   (4) 
(a„S)€0 

It is further shown in [6] that the spectral measures of the 
decomposition components in (4) are mutually singular. A 
model for the evanescent field which corresponds to the RN- 
SHP defined by (a, ß) e O is given by 

j(<*,8> 

e(c,s)(n,TO)    =     ^ e\a^\n,m) (5) 

/(<*.<») .(<*./») 
= £ 40"ßHna-mß)exp(j2T-^-^(nß + ma)) 

where the 1-D purely-indeterministic, complex valued pro- 
cesses {s\a,e\na - TO/?)} and {s<a,<J)(na - TO.3)}, are zero- 
mean and mutually orthogonal for all i £ j. Hence, the 
"spectral density function" of each evanescent field has the 
form of a countable sum of 1-D delta functions which are 
supported on lines of rational slope in the 2-D spectral do- 
main. 

One of the half-plane-deterministic field components, 
which is of prime importance in the STAP problem is the 
harmonic random field 

h(n, TO) = ]JP Cp exp (j2v(nwp + mvp) J (6) 

where the Cp'e are mutually orthogonal random variables, 
and (wp, Up) are the spatial frequencies of thepth harmonic. 

3.  THE STAP MODEL AND THE 2-D WOLD 
DECOMPOSITION 

The random field parametric model that results from the 
2-D Wold-like orthogonal decomposition naturally arises as 
the physical model in the problem of space-time processing 
of airborne radar data. In the latter problem the target 
signal is modeled as a random amplitude complex expo- 
nential where the exponential is defined by a space-time 
steering vector that has the target's angle and Doppler. In 
other words, in the space-time domain the target model 
is that of a 2-D harmonic component similar to (6). The 
purely-indeterministic component of the space-time field is 
the sum of a white noise field due to the internally generated 
receiver amplifier noise, and a colored noise field due to the 
sky noise contribution. The presence of a jammer results 
in a barrage of noise localized in angle and distributed over 
all Doppler frequencies. Thus, in the angle-Doppler domain 
each jammer contributes a 1-D delta function located at a 
specific angle, and therefore parallel to the Doppler axis. 
In the space-time domain each jammer is modeled as an 
evanescent component with (a, ß) = (1,0) such that its 1- 
D modulating process is a white noise process. The ground 
clutter results in an additional evanescent component of 
the observed 2-D space-time field. The clutter echo from a 
single ground patch has a Doppler frequency that linearly 
depends on its aspect with respect to the platform. Hence, 
clutter from all angles lies in a "clutter ridge", supported 
on a diagonal line (that generally wraps around in Doppler) 
in the angle-Doppler domain. A model of the clutter field is 
then given by (5) with (a, ß) such that tan ß/a corresponds 
to the slope of the clutter ridge. Since the rational numbers 

68 



are dense in the set of real numbers, an irrational slope of 
the clutter ridge can be approximated arbitrarily close, by a 
rational one. Hence any clutter signal can be either exactly 
modeled, or approximated by an evanescent field. 

We therefore conclude that the foregoing derivation opens 
the way for new parametric solutions that can simplify and 
improve existing methods of STAP. 

4.  ESTIMATION OF THE COMPONENTS 
PARAMETERS: PROBLEM DEFINITION 

We next state our assumptions and introduce some nec- 
essary notations. Let {y(n, m)}, (n,m) € D where D = 
{(i, j)\0 < i < S - 1,0 < j < T - 1} be the observed 
random field. 

Assumption 1: The purely-indeterministic component 
{w(n, m)} is a zero mean circular complex valued random 
field. 

Assumption 2: The number I = £(a>jS)60 J(a,w of 
evanescent components in the field, is a-priori known. This 
assumption can be later relaxed. 

Assumption 3: For each evanescent field {e\    '}, the 
modulating 1-D purely-indeterministic process {s\     } is a 
zero-mean circular complex valued process. 
Let y = [y(0,0),..., j/(0, T - 1),..., j/(S - 1, T - l)]r, and 
let w, ey"  ' be similarly defined. Let 

(°./s). 

[s\a'ß\0),s<?-ß\-ß),...,s?'ß\-{T- l)ß), 

s\a'ß)(a),«<••«(« -/?),...,*<"■»(<* - (T - \)ß), 

..., s\a-ß\(S - 1)«),...,«<«•»(($- l)a - (T- l)/?)](7) 

be the vector whose elements are the observed samples from 
the 1-D modulating process {s\a'ß'}. Define 

v(<*.4>) = 

[0, a, ..., (r-l)a, 
ß, ß + a, ..., ß + (T-l)a,   
(S-l)Ä (S-l)ß + a, ..., (S-l)/J+(:r-l)a]r(8) 

Given a scalar function f(v), we will denote the matrix, 
or column vector, consisting of the values of f(v) evaluated 
for all the elements of v, where v is a matrix, or a column 
vector, by /(v). Using this notation, we define 

d<-»    =   «pü2*J^v<*«). (9) 

Thus, using (5), we have that 

e<tt'*> =*<*•«© *<«•">, (10) 

where © denotes an element by element product of the vec- 
tors. 

Note that whenever na—mß = ka—£ß for some integers 
n, m, k, £ such that 0<n,fc<S-l and 0<m,£<jT-l, 
the same element of (\       appears more than once in the 

vector. It can be shown, [7], that for a rectangular observed 
field of dimensions S x T the number of distinct samples 
from the random process {s\a'ß^} that are found in the ob- 
served field is JVC = (S-l)|a|+(T-l)|/3|+l-(|a|-l)(|/?|- 
1). This is because Nc is the number of different "columns" 
one can define on such a rectangular lattice for a RNSHP 
defined by (a, ß). We therefore define the concentrated ver- 
sion, s[a'ß) of £\a'ß) to be an Nc dimensional column vector 
of non-repeating samples of the process {s\ }. Thus for 
any (a, ß) we have that 

£<<*.« _ A(a„8)s(a„8) 
(11) 

where A\a,ß^ is rectangular matrix of zeros and ones which 
replicates rows of s\     . 

Note however that due to boundary effects, the vector 
s)a'^' is not composed of consecutive samples from the pro- 
cess {Sj°'w} unless |a| < 1 or \ß\ < 1. In other words, for 
some arbitrary a and ß there are missing samples in s>°'^. 
We note that the covariance matrix K\a'ß^ which character- 
izes the process {s\ } is defined in terms of the concen- 
trated version vector s\a'ß) i.e., K<?-ß) = £[s<°'")(s^))H] 
and not in terms of the covariance matrix of the vector 
t\a-ß\ R\°"ß) = £$Q,/S)(^tt,/3))H]. The matrix R^w is a 

singular matrix, given by ^°"ß) = A^R^ (A^)*■ 

Since the evanescent components {e\ }, are mutually 
orthogonal, and since all the evanescent components are or- 
thogonal to the purely-indeterministic component, we con- 
clude that T, the covariance matrix of y, has the form 

(a,0)€O   «=1 

where r\a'ß^ is the covariance matrix of e\a  '. 
Using (10) and (5) we find that 

(12) 

r(a.« =   R (cß) , ©(d^(d^)")- (13) 

5. PARAMETRIC ESTIMATION OF THE 
INTERFERENCE COMPONENTS 

In this section we derive a computationally efficient algo- 
rithm for estimating both the jamming and clutter fields, 
based on the above results. The proposed estimation algo- 
rithm of the spectral support parameters of the evanescent 
field, a, ß and v\ is based on the observation (see the 
evanescent field model (5)) that for a fixed c = net — mß 
(i.e., along a line on the sampling grid), the samples of the 
evanescent component are the samples of a 1-D constant 
amplitude harmonic signal, whose frequency is u\a,ß). The 
algorithm is implemented by the following three-step pro- 
cedure: 

In the presence of an evanescent component, the peaks 
of the observed field periodogram are concentrated along 
a straight line, such that its slope is defined by the two 
coprime integers a and ß. Hence, several alternative ap- 
proaches for obtaining an initial estimate of the spectral 
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support parameters of the evanescent component can be de- 
rived by taking the Radon or Hough transforms, [12], of the 
observed field periodogram. (The current implementation 
employs the Hough transform for detecting straight lines in 
2-D arrays). However, due to noise presence, this estimate 
may perturbate. Since on a finite dimension observed field 
only a finite number of possible (a, ß) pairs may be defined, 
the output of the initial stage is a set of possible (a, ß) pairs 
such that the ratio £ is close to the ratio obtained for the 
(a, ß) pair estimated by the Hough transform. 

For each possible (a, ß) pair we next evaluate the fre- 
quency parameter of the evanescent component, v\a'ß). As- 
suming the considered (a,ß) pair is the correct one, we 
know that in the absence of background noise, for a fixed 
c = na — mß (i.e., along a line on the sampling grid), the 
samples of the evanescent component are the samples of a 
1-D constant amplitude harmonic signal, whose frequency is 
u\a' '. Hence, by considering the samples along such a line 
we obtain samples of a 1-D constant amplitude harmonic 
signal whose frequency v\a'ß^ can be easily estimated using 
any standard frequency estimation algorithm (e.g., the 1-D 
DFT). 

The test for detecting the correct (a,ß) and v\a'ß) is 
then based on multiplying the observed signal y(n, m) by 

exp(-j"27r■^■^(nß + ma)), for each of the considered a, ß 

and v\a'ß' triplets, and evaluating the variance of this signal 
along a line on the sampling grid such that c = na- mß. 
Clearly, the best estimate of a, ß and u\a's) is the one that 
results in minimal variance for the 1-D sequence, as in the 
absence of noise the correct a, ß and v\a'® result in a zero 
variance. 

Having estimated the spectral support parameters of 
each evanescent component, we take the approach of first es- 
timating a non-parametric representation of its 1-D purely- 
indeterministic modulating process {s*0'^}, and only at a 
second stage we estimate the parametric models of these 
processes. Hence, in the first stage we estimate the partic- 
ular values which the vectors £[a,ß) take for the given real- 
ization, i.e., we treat these as unknown constants. The es- 
timation procedure is implemented as follows: Multiplying 

the observed signal y(n,m) by ex.p(-j2w-£^(nß + m&)) 
and evaluating the arithmetic mean of this signal along a 
line on the sampling grid such that c = na- mß, we have 

8<-»(c) = 

J_ 
no—m/3=c 

.<<*,/») 
V"    y(n,m)ex.p(-j2x-£—-r-(nß + rn&))   (14) 

&2 + / 

where Ns denotes the number of the observed field samples 
that satisfy the relation na — mß = c. Once we obtained 
the sequence of estimated samples from the 1-D modulating 
process {SJ }, the problem of estimating its parametric 
model becomes entirely a 1-D estimation problem. Assum- 
ing the modulating process is an AR process, and applying 
to the sequence an AR estimation algorithm (see, e.g., [13]) 
we obtain estimates of the modulating process parameters, 
as well. 

MfMMpesß 

Figure 2: Spectral density of the observed field. 

Finally, it is important to note that we solve the diffi- 
cult problem of evaluating the rank of the low-rank covari- 
ance matrix of the interference as a by-product of obtaining 
the parametric estimates of the interference components: 
Denote the number of evanescent components (interference 
sources) of the field by Q. It is then shown in [11] that 
the rank of the interference covariance matrix is given by 

rank(r) = S £ |o»| + T £ |A| - £ \ak\ £ \ßk\ . In fact 
fc=i it=i *=i       fc=i 

the special case where Q = 1 and a = 1 is the well known 
Brennan rule, [3], of the rank of the clutter covariance ma- 
trix. 

6.  PARAMETRIC FULLY ADAPTIVE 
PROCESSING 

Having estimated the parametric models of the purely in- 
deterministic and evanescent components of the field, the 
estimated parameters can be substituted into (12)-(13) to 
obtain an estimate of the interference-plus-noise covariance 
matrix I\ 

Let Vt denote the target steering vector, given by 

vt = b(zjt) ® a(i9t) . (15) 

Assuming a linear, uniformly spaced, sensor array and a 
uniform CPI are employed in our model, the spatial steering 
vector a(tf) and the temporal steering vector b(ro) are given 
by 

&(0) = [l,eJ™,---,ei2*is-1)& 

'2TW gj2ir(T—l)toi b(ro) = [l,e^2 

respectively. It is well known (e.g., [3], p. 57) that the 
optimum space-time filter is given to within a scale factor 
by 

w = r_1vt, (i6) 

The test statistic z(zs, i?) is then given by 
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Figure 3: The test statistic z(w, 0). 

*(»,*) = wH(w,tf)y = vfCw.tfXT-1)^ .        (17) 

Let xf = (r-1)Hy. We thus have 

z(a, t?) = vf (c7, *)x/ = bH(w) ® aH(i?)X/ .       (18) 

Reorganizing the elements of Xf into a T x S matrix * 
where the elements of the fcth row of * are Xf((k — 1)S + 
1)... xf (kS), we conclude that for a linear, uniformly spaced, 
sensor array and uniform CPI the test statistic is given by 

T     S 
z(zs, 0) = J2 ^2 e-J

2"(P-1)»e-^(9-l)-9^(p) g) .      (19) 

Thus, Z(G7, tf) and ¥(p, g) are a 2-D DFT pair, and the test 
is equivalent to finding the 2-D frequency where the 2-D 
DFT of 9(p, g) is maximal. 

To illustrate the operation of the proposed solution we 
resort to numerical evaluation of some specific examples. 
Consider a 2-D observed random field consisting of a sum 
of a purely-indetenninistic component (background noise), 
a single evanescent (interference) component, and three har- 
monic components (targets). The purely-indetenninistic 
component is a complex valued circular Gaussian white 
noise field. The evanescent component spectral support 
parameters are (a,ß) = (1,-2), v(1~2) = 0. The modu- 
lating 1-D purely indeterministic process of this evanescent 
component is a first order Gaussian AR process, such that 
its driving noise variance (<r(1'-2))2 = 2, and oP-'~*\\) = 
—0.5. There are three targets which are located at (0.05,0), 
(0.15,0.15) and (-0.25,0.15), respectively. The observed 
field dimensions are 48 x 48. 

Let us define the experimental variance of each of the 
field components as Ew = vrHw for the purely indetermin- 
istic component; Ec = (e(o,,<J))He(Q,'3) for the evanescent 
component; and Ehk = hj^h*, k = 1,2,3, for each of the 
harmonic components, where h* is defined in the same way 

w and e^"'^ are defined. In this example we have ^F- = 

6dB, while for the three targets we have -g-|- = — 12.8dB, 

§* = -14.5dB, ^a- = -15dB. Due to the strong in- 
terference component, the presence of the three targets is 
hard to detect in the observed data whose power spectral 
density is depicted in Fig. 2. However these targets are 
easily detected by the test statistic z{w, #) depicted in Fig. 
3. In Fig. 3, z(w, ■d) is depicted as a function of the two- 
dimensional frequencies, i.e., angle and Doppler. 

7. PARAMETRIC PARTIALLY ADAPTIVE 
PROCESSING 

Recall that 

I**» = (A<a^R[Q'«(A<Q^)T) ©(d(Q*«(d<a-«)H). 
(20) 

Having estimated a,ß and u\ ' using the algorithm in 
Section 5, the vector d\a'*' is known. Hence, demodulating 
e\a'ß\ we conclude using (10) that the demodulated vector 
which we denote by e\a'*' is given by 

e(a-ß) = e(a'ß) ©((d<a'«)*)T. (21) 

From (11) we conclude that the covariance matrix of e^    ^is 
given by 

n<<*.« WlpWl/.IMllT =    AV"P>VC?-P\K?-P>) (22) 

In the following it is proved that since a and ß are 
already known, an orthogonal projection matrix onto the 
low-rank subspace spanned by the evanescent field covari- 
ance matrix can be found without estimating the paramet- 
ric model of the evanescent field 1-D modulating process, 
and hence without estimating R)° . Moreover this result 
enables us to avoid the need in both evaluating the field 
covariance matrix, and in employing a computationally in- 
tensive eigenanalysis to the estimated covariance matrix. 

More specifically, let us construct the following orthog- 
onal projection matrix 

!*"■»    =    Aj^ ((A<OÄ)TAJ^)~^A^»)r(23) 

It is easily verified (by substitution) that T* ' is an or- 
thogonal projection onto the range space of fl\a,w since for 
any ST dimensional vector v 

ft'«v    =    f^T^v. (24) 

Also, (T<<^>)2 = T<Q'«, and (T<?'8Y = T<°'«. 
Note that since A\ ' is a sparse matrix of zeros and 

ones only, the computation of T;    ' is very simple. 
The projection matrix onto the subspace orthogonal to 

the interference space is therefore given by (T:Q ))'L = 
I — T)a,p'. Hence by projecting the demodulated observed 
data vector y = y®((d) ')H)T onto the subspace orthog- 
onal to the interference subspace, a reduced dimension data 

vector given by y = ((T\    ')x J   y is obtained, such that 
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Figure 4: Spectral density of the field after being pro- 
jected onto the subspace orthogonal to the interference 
subspace. 

the interference contribution to the observed signal is mit- 
igated. Remodulating y by evaluating y © d|a,w, followed 
by sequentially applying this procedure to mitigate each of 
the interference sources, the detection problem is reduced 
to that of detecting a target in the presence of background 
noise only. Thus, in the special case where the background 
noise is known to be a white noise field, the statistical test 
is equivalent to finding the 2-D frequency where the 2-D 
DFT of the processed data vector (organized back into a 
2-D array) is maximal. 

As an example consider the same field as in the previous 
section. Due to the strong interference component, the pres- 
ence of the three targets is hard to detect in the observed 
data whose power spectral density is depicted in Fig. 2. 
However these targets are easily detected in the processed 
data as illustrated in Fig. 4. This result is obtained with- 
out estimating the parametric model of the evanescent field 
1-D modulating process, and hence without estimating the 
interference-plus-noise covariance matrix. Since both the 
estimation of the interference-plus-noise covariance matrix, 
as well as its analysis are saved, the proposed parametric 
partially adaptive processing method is robust and compu- 
tationally attractive. 
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ABSTRACT 

Hyperspectral data consists of hundreds of contiguous ra- 
diometric measurements collected passively from each pixel 
in a scene. Detection capitalizes on exploiting the difference 
between target and background spectral signatures. Many 
detection methods in hyperspectral processing employ sig- 
nal models commonly used in radar even though it is an 
active sensor. Starting from a common signal model, we 
discuss adaptive detection algorithms for hyperspectral data 
by outlining fundamental similarities and differences with 
radar. We demonstrate detection using hyperspectral data 
through experiments with real data and discuss the funda- 
mental applicability of adaptive radar signal models to de- 
tection in hyperspectral processing. 

1. INTRODUCTION 

The potential of hyperspectral sensors to perform target de- 
tection has begun to emerge as data from current and pro- 
jected sensors has shown that passive, spectral measure- 
ments can distinguish targets from background. The ba- 
sis for detection resides in exploiting the differences in re- 
flective properties that occur in the hundreds of contiguous 
spectral bands that comprise hyperspectral signals. Collec- 
tively, these measurements constitute a vector signal that 
may be used in detection algorithms designed to maximize 
the separation between target and background signals. 

For detection algorithms to be successful in operational 
scenarios, they must employ accurate statistical descriptions 
of both the target and background. Many of the algorithms 
currently in use have been adapted from signal models used 
for detection in radar systems. Consequently, despite the 
significant differences in the physical mechanisms, a strong 
parallelism can be drawn that maps the measured signals 
from each sensor to a common signal model. 

This work was sponsored by the Department of the Defense under 
Contract F19628-00-C-0002. Opinions, interpretations, conclusions, and 
recommendations are those of the author and are not necessarily endorsed 
by the United States Air Force. 

2. MODELS FOR HYPERSPECTRAL SENSING 
AND MTI RADAR 

In order to understand the relationship between the signal 
models for hyperspectral sensing and MTI radar, we first 
explain the basic concepts behind both sensor models. 

2.1. Hyperspectral Imaging 

Hyperspectral sensors passively collect measurements of ra- 
diation in hundreds of contiguous spectral bands. Collec- 
tively, hyperspectral imaging (HSI) provides continuous cov- 
erage of the electromagnetic spectrum over a wide range of 
wavelengths. Incident radiation from the sun follows sev- 
eral pathways as it reaches the sensor where it is measured 
in terms of radiance (Watts/steradian/cm2//jm). Mathemat- 
ically, the radiance arriving at the sensor, Lsensor(X), can 
be described as 

Lsensor(X) = Lsoiar(X)p(X)T(X) + Lpath(X)       (1) 

where Lsoiar{X) is the radiance spectrum entering the at- 
mosphere at a designated time and location as a function of 
wavelength. r(A) is the atmospheric transmittance, and pX 
is the surface reflectance, and Lpath(X) is the additive path 
radiance arising from interactions with the atmosphere. 

In some cases, processing of the radiance arriving at the 
sensor can yield useful results. However, in most cases, the 
surface reflectance, p{X), is the quantity that is desired be- 
cause it is an intrinsic property of the area being imaged and 
is invariant to differences in atmospheric conditions during 
observation. Reflectance is defined as the ratio of the in- 
tensity arriving at the surface of an object to the intensity 
reflected (0 < p(X) < 1), and the recovery of p(A) from 
L(X) is accomplished through atmospheric compensation. 
In this procedure, the surface reflectance for each pixel is 
recovered by removing the effects of gaseous and water va- 
por absorption in the atmosphere. Atmospheric compensa- 
tion is derived from radiative transfer models and is by no 
means an exact science. In addition to being computation- 
ally demanding, the amount of error in the compensation is 
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Fig. 1. 3-D datacubes for HSI. 

Fig. 2. 3-D CPI datacube for MTI radar. 

difficult to quantify. Nevertheless, most hyperspectral pro- 
cessing is performed "in reflectance." 

Hyperspectral sensors collect data along two spatial axes 
derived from the motion of the sensor (along-track and across- 
track) and another spectral axis. The resulting three-dimension 
cube is depicted in Figure 1. The spatial resolution in HSI 
is a consequence of several factors, but generally can be de- 
termined from only two: instantaneous field of view (IFOV) 
and altitude. IFOV is a parameter describing the optics that 
conveys the angular expanse of one element on the focal 
plane array that measures radiance. Multiplying the IFOV 
by the altitude of the sensor gives the pixel size of the scene. 

2.1.1. Linear Mixing Model 

Hyperspectral processing attempts to exploit the wavelength- 
dependent features of the reflectance spectrum measured 
from a pixel. However, it is quite common for the sur- 
face area occupying a pixel to be a combination of distinct 
materials, or endmembers (e.g., water, trees, vehicle), each 
possessing their own reflectance functions. The reflectance 

function of a mixed pixel is some combination of the distinct 
reflectance functions of each endmember. In general, accu- 
rate physical modelling of the reflective properties of mix- 
tures is not trivial, and is a function of numerous molecular 
parameters, as well, as the proportions in which the end- 
members appear. Several physically-derived models have 
been proposed to model mixing under different conditions. 

A common assumption for describing the mixing pro- 
cess throughout hyperspectral processing that is analytically 
tractable is that the reflectance spectrum of a mixed pixel is 
a weighted linear combination of the individual endmember 
reflectance functions, where the weights are the proportions 
in which each endmember appears. Thus, the mathematical 
model describing this recipe for a mixed pixel is 

Sa + n = J] OjSj + n (2) 

Here, x is the reflectance spectrum of a mixed pixel, and S is 
a matrix whose P columns are the reflectance spectra of the 
endmembers, and a is a P x 1 vector of non-negative frac- 
tional abundances. The additive noise vector, n, represents 
the inaccuracies in the model. Two important constraints on 
a must be imposed. The non-negativity constraint demands 
that Oj > 0, i = 1,..., P, and to ensure the composition 
of a mixed pixel is completely accounted for, the additivity 
constraint requires Y^=i ai = 1- Collectively, these con- 
straints and the synthesis equation for mixed pixels in (2) 
are referred to as the Linear Mixing Model (LMM). 

2.2. MTI Radar 

The objective of MTI radar systems is to detect the pres- 
ence of moving objects. MTI radars on airborne platforms 
illuminate a scene with a waveform and sample the return 
at each element of a multi-element array (We restrict our 
attention to uniform linear arrays (ULA).). The process is 
repeated during a coherent processing interval (CPI). Af- 
ter pulse compression, the data is organized into a three- 
dimensional CPI datacube, as depicted in Figure 2, that is 
indexed by 1) pulse number, 2) element number, and 3) sam- 
ple number (range). 

At each range value, a two-dimensional function locates 
the presence of reflecting objects by their cone angle and 
their corresponding Doppler frequency. For a fixed system, 
the signal strength returned by a target depends upon its 
range cross-section (RCS) value and its range. Stationary 
objects will yield values along a "clutter ridge", whereas 
moving objects will lie off the ridge by an amount propor- 
tional to its velocity relative to the platform. A moving tar- 
get is most visible when its velocity is high (so as to move 
it as far away as possible from the clutter ridge), and when 
it returns a strong signal. 
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By virtue of linearity, MTI radar observes a signal model 
similar to the LMM in (2). The vector signal measured by 
an antenna array is the linear superposition of reflections re- 
ceived from all directions, and when a target is present, the 
corresponding signal is given by 

x = t + c + n. (3) 

Here, x is an M x 1 observation vector, where M is the 
number of elements on the ULA, c and n are clutter and 
noise, respectively, and t is the target and is expressed as 
t = av(<j>, /). a is the relative amplitude of the return 
signal, and v is the steering vector which is related to the 
geometry of the ULA as well as signal parameters. The 
entries of v are given by: 

j2*r[(m-l)p£p+(n-l)f cos*] 
(4) 

where m = 1,..., M, is the element number, n = 1,..., N, 
is the pulse number, <f> is the azimuth angle, / is the Doppler 
frequency, A is the wavelength, d is the array element spac- 
ing, and PRF is the pulse repetition frequency. Resolution 
in MTI radar systems is driven in the range direction by the 
signal bandwidth of the interrogating signal and by the aper- 
ture length in azimuth. 

23. Relationships Between HSI and MTI Radar 

We can see from (2) and (3) that signal models for HSI and 
MTI radar are quite similar. Both sensors organize measure- 
ments that occupy three axes (See Figures 1 and 2). Despite 
the fact that HSI is passive and yields non-negative vector 
measurements, and MTI radar is a form of active sensing 
producing complex-values, the key to this equivalence is 
the parallelism between endmembers and steering vectors 
as well as RCS and fractional abundances. 

In (4). v is a vector whose structure gives rise to the 
complex-valued signal in x. When a target is in motion at 
a specific range, its location in azimuth and Doppler fre- 
quency decide the exact value of the steering vector. The 
one-dimensional subspace defined by the target vector, t, 
varies depending on the location and speed of the target. In 
most instances, the resolution cell size is sufficiently small 
that only one moving target resides in it. In the case, how- 
ever, where multiple moving targets reside in a single cell, 
the response from the cell will be the sum of weighted steer- 
ing vectors, each having their own Doppler frequency. The 
target response, t. can be extended to include P targets, so 
that t = X)i=i Qiv" = Va. Compared to (2), the steer- 
ing vectors that are columns of V are analogous to the end- 
members in S. Further, in (4), c and n are comparable to 
the background and additive noise in (2), and their statistics 
are key factors in the detectors for each sensor type. 

3. TARGET DETECTION 

Based on the comparable signal models for HSI and MTI 
radar discussed in Section 2, we can consider strategies for 
detection in each. The LMM has been employed in numer- 
ous circumstances to describe the mixing process. For the 
purpose of target detection, it is capable of conveying the 
mathematical relationship between the spectra of targets and 
background. By virtue of the LMM, we assume that all pix- 
els in a scene imaged by a hyperspectral sensor consist of at 
least one endmember from the columns of S. 

A specific type of target possesses a spectrum, but vari- 
ability can arise due to many factors, including changes in 
observation conditions. Depending on its source, variabil- 
ity can be accounted for by adding endmembers (and cor- 
responding abundances) to describe the same target under 
different conditions, or by shaping the additive noise, n, in 
the LMM to reflect statistical variability. St denotes the 
subset of columns in S describing targets, and Sj denotes 
background endmembers. Because the entries of S are non- 
negative, St and S& cannot be mutually orthogonal spaces, 
and the subspaces they span necessarily overlap. 

3.1. Types of Hyperspectral Detection 

The task of detection can be posed for two separate cir- 
cumstances that are of interest in hyperspectral processing 
[1]. The Known Target detection problem occurs when the 
presence of a specific target is to be detected amid back- 
ground and noise, and St is known. In contrast the Un- 
known Target detection problem has no knowledge of a 
target subspace, but attempts to detect any pixel that is dif- 
ferent from the background. For this reason, detectors de- 
signed for this goal are often called anomaly detectors. 

The class of Known Target detection algorithms can be 
further divided into two categories. The set of structured 
background algorithms assumes that the subspace where 
the background resides, S&, is known so that the LMM in 
(2) can be re-written as 

x   =   Stat + Sbai, + n (5) 
PT PB+PT 

=     5ZatS,+     53     aiSi+n (6) 
i=l i=PT+l 

where P = PT + PB- Note that the obstacles to perfect de- 
tection, background and additive noise, have been modelled 
as two distinct entities, S;,afc and n. The resulting binary 
detection test for structured background is 

Ho : x = Saat + n (7) 
Hi :        x = Stat + S6ai + n (8) 

Alternatively, if the background endmembers are un- 
known, the sources of interference cannot be separated into 
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separate background and noise terms. The unstructured 
background problem lumps all non-target pixel contribu- 
tions into a single vector, w, and the resulting binary detec- 
tion test is written as: 

Ho: 
Hi: 

x = w 
x = S4at + w 

(9) 
(10) 

The different pairs of hypotheses in (7-8) and (9-10) convey 
varying levels of knowledge about the detection problem 
and are critical to the formulation of optimal detectors. 

When the size of a target is expected to be equal to or 
greater in size than that of a pixel, i.e., the target is resolved, 
the background is no longer present in either hypothesis. 
This is a significant departure from radar detection models 
which assume an additive target appears in addition to clut- 
ter. A replacement target displaces some amount, or all, 
of the environmental interference, or background. The fact 
that the amount of background displaced by a target in a 
mixed pixel can vary means that the statistics of the inter- 
ference will also vary. As a consequence, the foremost chal- 
lenge in the design of optimal, statistical detectors for sub- 
pixel targets stems from the uncertainty of what fraction of 
the pixel the target occupies. 

3.2. MTI Detection 

Like the techniques for hyperspectral detection, algorithms 
in MTI radar find moving targets by exposing the Doppler 
effect in signals measured by a ULA. Just as the subspaces 
defined by target and background endmembers in HSI de- 
tection provide the basis for separating target and background 
pixels, the geometry of the array, along with the signal pa- 
rameters, are combined by algorithms to maximize the vis- 
ibility of moving targets. 

Algorithms for detecting t in (3) optimally suppress the 
presence of c and n by means of Space-Time Adaptive Pro- 
cessing (STAP) [2]. Resembling the detection model for a 
known target in an unstructured background, the binary de- 
tection model for a moving target, t, is given by 

Ho : x = w 
Hi : x = t + w, 

(11) 
(12) 

where w = c + n in (3). 
Moving targets may be present at any range and azimuth 

position, and each pixel in the MTI radar datacube is a can- 
didate for a detection test. For a specific range value, the 
cube of MTI data reduces to a single plane having MN 
resolution cells. It is well known that the detector which 
maximizes the SNR whitens the received signal based on 
a filter derived from the covariance of the interference. A 
covariance, R^,, having size MN x MN introduces signif- 
icant complications, and, most often, a local covariance of a 

smaller size is generated from a local neighborhood around 
the cell being processed. Confining the covariance to a 
neighborhood reduces the possibility of introducing non- 
stationary behavior and results in a more precise estimate. 

33. Relationship Between HSI and MTI Detection 

As noted earlier, reflectance values in hyperspectral pro- 
cessing are non-negative and no greater than one, and un- 
like the intuition from radar, targets do not necessarily in- 
duce signals of greater magnitude than background. Rather, 
targets are discerned from background reflectance spectra 
primarily by their shape, and detectors exploit the differ- 
ences in spectral shapes represented by the endmembers to 
separate targets from background. 

3.4. Detectors 

We have shown that the signal models for hyperspectral tar- 
get detection in (7-8) and (9-10) and the signal model for the 
detection of moving targets in (1112) are simialr. The key to 
the parallelism lies in the similar roles played by endmem- 
bers and steering vectors and the equivalence of abundances 
and RCS values and is further driven by the assumption of 
linearity when combining multiple signals. 

By (11-11), detection in MTI radar compares range-angle 
cells to a threshold to determine whether or not a target is 
moving. Numerous detectors have been proposed to per- 
form this comparison, each equipped to adaptively optimize 
some aspect of the decision. Notably, the most desirable 
features of detectors are: 1) CFAR (Constant False Alarm 
Rate), 2) maximum SNR, and 3) speed of computation. A 
detector might be able to assure one of these features, at the 
expense of maintaining the others, and the trade-off of these 
qualities is instrumental to an appropriate implementation. 

The same set of circumstances also surrounds hyper- 
spectral detection. A taxonomy of hyperspectral detectors 
for both the known and unknown target case hyperspectral 
data appears in [1], indicating the hierarchy of common de- 
tectors. The Generalized Likelihood Ratio Test (GLRT) [3] 
is a CFAR detector that utilizes the unstructured background 
signal model, and for a single known target spectrum, s, the 
GLRT for a test pixel spectrum, x, is given by: 

TGLRTW = —z^i ; 
Hi 
< Vo- 

(S^R;
1
S)(1 + X^RU;

1
X)^0 

(13) 

Other familiar detectors may be derived directly from the 
GLRT under specific circumstances, such as the Adaptive 
Matched Filter (AMF) [3] and the Adaptive Coherence Es- 
timator (ACE) [4, 5]. In the improbable case where the in- 
terference covariance is the identity matrix, the ACE sim- 
plifies to a simple cosine measure between s and x, often 
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Fig. 3. Forest Radiance I scene. 

referred to in the hyperspectral processing literature as the 
Spectral Angle Mapper (SAM). It is defined as: 

TSAM(X) = (14) 

With no incorporation of background statistics, clearly, SAM 
cannot be CFAR or optimum in any sense. 

4. HYPERSPECTRAL DETECTION RESULTS 

4.1. Sub-pixel Targets 

Sub-pixel target spectra have been created synthetically by 
adding the pure mean target spectrum from Figure 4(a) in 
varying proportions to the 8232 pure tree spectra (back- 
ground) in Figure 3. Although, there is no assurance that 
spectra mix linearly in real mixed pixels, we have employed 
this assumption for our investigation until accurate sub-pixel 
target data and ground truth become available. 

We have estimated the background covariance from the 
homogeneous tree spectra. Both detectors yield values be- 
tween 0 (background) and 1 (target), and pure background 
detection statistic values have been generated from the 8232 
tree pixels. An equal number of target mixtures resulted by 
combining the same background pixels with the mean target 
vehicle spectrum in 25%/75%, 50%/50%, and 75%/25% 
target/background proportions. The range of detection statis- 
tic values for the SAM detector appears in Figure 4(b) and 
for the GLRT in Figure 4(c). 

In Figures 4(b) and 4(c), the regions of dark blue cor- 
respond to the range of statistic values induced by the tree 
pixels. The regions of red correspond to the range of tar- 
get mixture statistic values. Intervals of light blue, if any, 
correspond to regions where test statistics from pure back- 
ground pixels and sub-pixel targets overlap and indicate pix- 
els where false alarms and missed detections could occur. A 
white strip appears at the value of the mean target/background 
statistic. Regions of yellow indicate the amount of separa- 
tion, if any, between target and background. The greater the 
width of the yellow region, the better the detector is capable 
of separating sub-pixel targets from pure background. 

Figure 3 displays the RGB image of the Forest Radiance I 
scene imaged by the (Hyperspectral Digital Imagery Collec- 
tion Experiment) HYDICE sensor. The data collection ac- 
quired 210 bands of spectral data in spectral bins 3 — 11 nm 
wide ranging from 399—2501 nm (Visible to Shortwave In- 
frared). The scene consists of 1280 lines of data, each hav- 
ing 320 samples with approximately 1 m x 1 m spatial reso- 
lution. Three regions of distinct background type have been 
demarcated: trees, grass, and mixed. In addition, a sepa- 
rate region is outlined encompassing several vehicles of the 
same type, from which pure target pixels are derived. Fig- 
ure 4(a) illustrates the mean target spectrum obtained from 
37 pure target pixels. 

We demonstrate detection with hyperspectral data in two 
different experiments. The goal of the first experiment is to 
demonstrate how sub-pixel targets are detected when they 
appear mixed with background. The second experiment 
considers the extreme case of the sub-pixel target problem 
when the target is resolved and obscures all background 
when it is present. For both experiments, the performance 
of the SAM and GLRT detectors is compared side-by-side. 

4.2. Resolved Targets 

The 37 target pixels in Figure 3 are fully resolved, and they 
completely obscure any background. In spite of the fact that 
there is no background to whiten when the target is present, 
and using the 37 target pixels and the 8232 background pix- 
els, we assessed the performance of the SAM and GLRT de- 
tectors in separating pure target and pure background spec- 
tra. In Figure 4(d), both the SAM and GLRT detection re- 
sults for resolved targets are depicted side-by-side. 

43. Discussion 

In Figure 4(b) the SAM detector is unable to successfully 
separate every sub-pixel target until 75% of the pixel is oc- 
cupied by the target. This is not surprising since SAM does 
nothing to suppress the background. On the other hand, 
in Figure 4(c), the GLRT has a relatively large pure back- 
ground and target/background separation even when the tar- 
get occupies only 25% of the pixel. This is due to the sup- 
pression of the background through whitening by the in- 
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Fig. 4. (a) Mean target spectrum; (b) Sub-pixel detec- 
tion statistics for SAM; (c) Sub-pixel detection statis- 
tics for GLRT; (d) Resolved target detection results for 
SAM and GLRT. 

verse covariance, R"1 in (13). For resolved targets, Fig- 
ure 4(d) confirms that the effect of whitening significantly 
improves the separability of target and background. 

In both experiments, the same estimated covariance was 
used regardless of the percentage of background present 
For this target and background, the results in Figure 4 show 
that, even when the background covariance is mismatched 
to the amount of background present, the performance still 
exceeds that of the SAM detector. Proper cancellation of 
background for hyperspectral detection is a function of the 
percentage of background present as well as the relationship 
between the target and background subspaces. Based on the 
LMM, this relationship will be key for 

5. CONCLUSION 

We have demonstrated in this paper that, under the assump- 
tion of linear mixing, detection in hyperspectral processing 
bears significant similarities with detection in MTI radar. 
The key to this parallelism is the analogous relationship be- 
tween endmembers and steering vectors as well as abun- 
dances and RCS values. Our detection results indicate that 
statistical detectors for radar can be adapted to hyperspectral 
signals for both the sub-pixel and resolved target problem, 
even though sub-pixel targets give rise to replacement target 
models. Moreover, future work will continue to investigate 
methods for translating the optimalities of radar detection to 
the hyperspectral domain. 
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ABSTRACT 

The problem treated in this paper is the one of detection and 
restoration of ship wakes in Synthetic Aperture Radar (SAR) im- 
ages. This cannot be easily made, because SAR images are cor- 
rupted by a granular noise, called speckle and because there is 
no information about the direction and the level of the wake. For 
these reasons, most detection algorithms use the Radon trans- 
form, which makes square a straight with a point We propose 
here a new method, based on the manage between the Radon 
transform and a filtering method used to interpolate the image 
in a rotating reference system, introduced by the Radon trans- 
form theory. This filtering technic is the stochastic matched fil- 
tering technic, which allows to maximize the signal to noise ratio 
after processing. Experimental results on SIR-C/X-SAR images 
are presented and compared to those obtained using the classical 
approach. 

1. INTRODUCTION 

Recently, a great deal of research has been dedicated to ship 
wake detection in Synthetic Aperture Radar (SAR) images. In- 
deed, it is well known that SAR images are able to show ship 
wakes as lines darker or sometimes brighter than the surround- 
ing sea. Most of the detection algorithms use the Radon transform 
[2, 7,8]. Indeed, when an image contains a straight line or a seg- 
ment, its Radon transform exhibits a narrow peak if the line is 
brighter than its surroundings and a trough in the opposite case. 
Thus, the problem in finding lines is related to detect these peaks 
and troughs in the transform domain. Other methods use the detec- 
tion on both ships and ship wakes [5]. Given that SAR images are 
affected by a granular, multiplicative noise (called speckle), most 
of these detection algorithms pre-filter nie data in order to improve 
the visibility of the ship wakes. 
We know that the application of the Radon transform requires the 
computation of interpolated image in a rotating reference system. 
In this paper, we propose a new method based on the manage be- 
tween the Radon transform and a filtering method. We use this 
filtering technic to compute the interpolations of the SAR image, 
in order to estimate properly the signal of interest (the ship wake) 
in the rotating reference system. This processing is called the 
stochastic matched filtering technic [1]. It is based on the sig- 
nal expansion into series of functions with uncorrelated random 

variables for decomposition coefficients. This corresponds to the 
Karhunen-Loeve expansion in the case of a white noise. Because 
the chosen basis functions improve the signal to noise ratio after 
processing, there is no more sinusoidal curves corresponding to 
the speckle in the Radon domain, and the detection of the peak (or 
trough) corresponding to the ship wake is improved. 
First of all, we recall in section 2 the discrete Radon transform 
[4], in the case of a two-dimensional signal. Then, we present, 
in section 3, an interpolation-filtering method for noise corrupted 
image in a rotating reference system. First, we recall the stochas- 
tic matched filtering technic and then we describe how to perform 
an interpolation based on this method and using the discrete co- 
sine transform. We finish this section with the explanation of the 
subimage processing. Next, in section 4, we propose an example 
of application of our processing on a SIR-C/X-SAR image, which 
shows a moving ship and its dark turbulent wake. We finish this 
article with a comparison of our results with those obtained by the 
classical approach, which uses the Radon transform based on the 
nearest neighbor interpolation. 

2. THE DISCRETE RADON TRANSFORM 

The Radon transform on Euclidean space was first established 
by Johann Radon in 1917. Nearly half a century after Radon's 
work, the Hough transform for detecting straight lines in digital 
pictures was introduced. But this transform is actually a special 
case of the Radon transform. We are going to recall in this section 
the discrete Radon transform of a two-dimensional signal. 
Considering an image /, (M + 1) x (M + 1) pixels, its discrete 
Radon transform, I is expressed by: 

Af/2 

T(xe,6) =     Y^    I(xecos9- 
j,(,=-M/2 

■ yg sin 9, xg sin 6 +ye cos 8), 

where xg and yg sit integers which are bounded by —^ and ^; 
6 corresponds to the rotation angle and takes values between 0 and 
■K. 

The previous equation shows that the computation of the Radon 
transform requires, for each parameter 9, the calculation of the 
new pixel values in reference system 9R». Indeed, the new coor- 
dinates are not integer values and so are not corresponding to the 
native mesh of the image. 
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By nature, the Radon transform accentuates linear features in an 
image by integrating along all possible lines. The result is that an 
image which is non zero in a single point (xo, yo) has a Radon 
transform which is non zero along a sinusoidal curve of equation 
xe = xo cos 9 + y0 sin 6. The phase and frequency of this si- 
nusoidal curve depend on the spatial location of the correspond- 
ing point in the original image. If the original image contains 
a straight line or a segment, its Radon transform exhibits a nar- 
row peak, if the line is brighter than its surrounding, and a trough 
in the opposite case. The coordinates of the peak (or trough) are 
(x«0, do) which correspond to the parameters of the polar equation 
xe0 = x cos do+y sin 0o of the straight line. Thus, the problem of 
finding lines is reduced to the detection of peaks and troughs in the 
transform domain. The Radon transform is particularly suited for 
finding lines in a noise-corrupted image, because the integration 
process tends to cancel out intensity fluctuations due to the noise. 
For this reason, we can find in the literature several applications in 
the domain of wakes detection (see [2,7, 8] for example). 

3. INTERPOLATION-FILTERING OF A ROTATING 
IMAGE 

We have seen that the Radon transform of an image implies, 
for each value of the 8 parameter, the computation of an interpo- 
lated image. We want to use the Radon transform in order to detect 
ship wakes in SAR images. Given that SAR images are corrupted 
by a granular noise, called speckle, it is of great interest to take 
into account this noise to compute the interpolation of such an im- 
age, in order to give a good estimation of the signal of interest 
in the rotating reference system. For this reason, we present here 
an interpolation method, based on the stochastic matched filtering 
method, which principle is to expand the noise-corrupted signal 
into series of functions with uncorrelated random variables for de- 
composition coefficients. 

3.1. The stochastic matched filtering method 

Consider a two-dimensional noise-corrupted signal, Z(x,y), 
defined over D = [-T; T] x [-T; T\. This one corresponds to the 
superposition of a signal of interest S(x, y) with a noise B(x, y): 

Z(x, y) = S(x, y) + B(x, y)       V(x, y) € D, 

where S(x, y) and J3(x, y) are assumed to be independent and 
stationary. 
We want to expand simultaneously the signal of interest and the 
noise into series of the form: 

S(x,y) = Jim  y"!s„#n(s,y) 
n=l 

JV 

B(x,y) = JV»moX)6n*'l(a:>3')> 

In these expressions, *„(x,y) are the deterministic linearly in- 
dependent basis functions, and sn and bn represent zero-mean, 
random variables expressed by the following relations: 

sn= //  S(x,y)$„(x,y)dxdy 

If bn=ll   B(x,y)$n(x,y)dxdy. 

The determination of these random variables depends on the choice 
of the set of deterministic functions {$n(x, y)}. We will used the 
set, which provides the uncorrelation of the random variables, i.e.: 

f E{s„sm} = E{si} Sn.m 
I   E{bnbm} = E{bl}5n,m. 

Now, we show how to determine these functions *n(x, y). In or- 
der to find them, let us consider the stochastic matched filtering 
technic [I]. 
If we consider a deterministic, stationary two-dimensional signal, 
called S(x, y), which is defined over D, corrupted by an ergodic, 
stationary noise B(x, y), the matched filtering technic consists in 
finding a function $(x, y), defined over £>, in order to maximize 
the signal to noise ratio K, expressed by the following relation: 

K_      \ffDS(x,y)$(x,y)dxdy\2 

E{\SJDB(x,yWx,y)dxdy\2y 

When the signal is not deterministic, but a random, zero-mean, 
stationary, two-dimensional signal S(x, y), we can show that K 
can be explained as follows: 

E {|SfD S(x, y)*(»,y)dxdy|2} 

~ E{\nDB(x,y)Hx,y)dxdy\2}' 

Given that this signal to noise ratio can be rewritten as the ratio 
of two quadratic forms, it appears to be a Rayleigh quotient, so it 
will be maximized if $(x, y) is the two-dimensional eigenfunc- 
tion associated to the maximal eigenvalue of the following integral 
equation: 

IIDrss(x -x',y- y')$n(x',y')dx'dy' = 

A„ JSD TBB(X -x',y- y')*n(x',y')dx'dy', 
(2) 

for all (x, y) e D and where Vss and TBB represent the covari- 
ances of the signal and of the noise, respectively. 
Random variables sn and bn are uncorrelated, when the *n(x, y) 
functions are the eigenfunctions of integral equation (2), with eigen- 
values An verifying: 

A„ = E{sl} 
E{bi}- 

(1) 

When eigenfunctions $n(x, y) are normalized such as the follow- 
ing integral 

JJ   JJ TBB(
-
X
~

X''y-2/')*n(x,y)*n(*',y')dxdxdydy 

takes one for value, we can show that functions *n(x, y) are ex- 
pressed by: 

*n(x, v) = JJ TBB(X -x',y- y')$n(x',y')dx'dy'.   (3) 

In these conditions and considering the Zn random variables, ob- 
tained by projecting functions *n(x, y) on noise-corrupted signal 
Z(x, y), we can show that the use of the following expansion 

JV 

Z(x,y)=  lim Vz„*„(x,y) 
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corresponds to a signal to noise ratio of the n    component of 
Z(x, y) expressed by: 

2 A«i 

where crf/og is the signal to noise ratio before processing. 
So all the eigenfunctions $n(x,y) associated to eigenvalues An 

greater than one can contribute to an improvement of the signal to 
noise ratio. For this reason, filtering the observed signal can be 
made by keeping all the components with a signal to noise ratio 
greater to a certain level, anyhow greater than 1. 

32. Interpolation using the stochastic matched filtering method 

To compute an interpolation based on the stochastic matched 
filtering method, the basic idea is to expand the observed signal 
and then to restore the signal of interest using the ^n(x, y) func- 
tions previously interpolated. But this reasoning presents some 
defaults. Indeed, it implies an heavy CPU budget and some mem- 
ory problems may appear. For these reasons, we are going in mis 
section to propose a new formulation for the stochastic matched 
filtering method by using the discrete cosine transform. 

3.2.1. Analytical approximation for the solutions of the inte- 
gral equation 

We can find in the literature several works based on the stochas- 
tic matched filtering technic in its discrete form (see [6] for exam- 
ple). Unfortunately, when we consider the discrete form of in- 
tegral equation (2), the eigenvectors solution of this generalized 
eigenvalue problem are linked to the native increment of the im- 
age and could cause problems for image interpolation. So, we do 
not consider the discrete relation but the continuous one to find the 
$n(x,y) functions. 
Considering the DCT1 coefficients a?,,, ß£f*,, and &£**,, of 
functions $n(x,y),Tss(x-x',y-y') and TBB(X-X',y-y'), 
we can show that solving integral equation (2) becomes equivalent 
to solving the following linear system: 

Nf  Nf Nf  Nf 

££<*X5^ = A.££«2XE (4) 

where (Nf + 1) corresponds to the number of DCT coefficients 
taken account and is high enough to ensure the uniform conver- 
gence of the series to their respective functions. 
Finally, the analytical approximation $n(x,y) of the $n(x,i/) 
functions solution of the integral equation, is obtained with the 
following relation, for (x,y) € D: 

Nf  Nf 

3.2.2. Interpolation-filtering method 

We propose in this subsection a new formulation of the stochas- 
tic matched filtering method by using the discrete cosine trans- 
form. In these conditions, we are looking for the expression of the 
coefficients of the filtered signal expanded into cosine series; we 
shall reconstruct the approximation of the restored signal in the fi- 
nal phase of the processing. 
Let Z(x, y) be the observed signal to be expanded and let Z(x, y) 
be the reconstructed filtered signal. We have: 

Q 

Z(x,y) = 2J zn*n(z,y)       V(x,y) 6 D, (5) 

where Q is chosen such as XQ is greater to a certain threshold, 
anyhow greater than 1. 
In the last relation, zn are the random variables to be determined 
from the input data: 

zn = / /  Z(x,y)$n(x,y)dxdy. (6) 

We have seen that these random variables are uncorrelated when 
functions $n(x, y) are the eigenfunctions of integral equation (2). 
The \t„ (x, y) basis functions are obtained by projecting functions 
$„(x, y) on the noise covariance as described in relation (3). 
First, we modify this relation, in order to express the /?£? coeffi- 
cients of the ^n(x,y) cosine series. It comes: 

Nf  Nf 

/£, = r8££as,ßft5*> 
k=0 !=0 

(7) 

fot(p,q) = 0,l,...,Nf. 
In like manner, from expansion (5), we obtain for expression of 
the I?*,; DCT coefficients of restored signal Z(x, y): 

Q 

— £ *»0* 
n=l 

(8) 

To end, we have to explain the Zn coefficients in terms of the co- 
efficients of the observed signal and of the eigenfunctions. We can 
show that relation (6) is equal to: 

Nf  Nf 

*»ssI'a££*MaM. 
p=0 g=0 

(9) 

where i9p>, represent the Z(x, y) DCT coefficients. 
Considering the 6 rotation angle, it is possible to compute the 
interpolated-filtered signal using the following relation: 

$n(x,y) = E£<<cos(lfc^)coS(Z%^).                            "/"/            f*«x.-T)\      f««y.-T)\ 
£ZtZ \      2T      J       \      2T      J Z9(Ie)jw) = ^^19fciCOSl_L_ -jcosl     v" M, 

k=0 1=0 ^ ' ^ ' 

This new method for finding an analytical approximation for the 
solutions of the integral equation has been quantified and com- 
pared to the classical approach, in the case of the Fredholm inte- 
gral equation, that is when the noise covariance describes a white 
noise [3]. 

1 Discrete Cosine Transform 

where (x$, y$) represents the new coordinates of the pixels in ro- 
tating reference system Jfo. 
With such a formulation, it is possible to use the stochastic matched 
filtering method for image interpolation in a very short time, be- 
cause all the computations can be made by using only the algo- 
rithm of fast discrete cosine transform. 
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33. Subimages processing 

To apply the stochastic matched filtering method, it is neces- 
sary to respect the stationary condition for the signal and the noise. 
We know that we cannot consider an image as a realization of a 
stationary process. But after segmentation, we can define several 
areas representative of a texture. So a particular area of the im- 
age (a subimage) can be considered as a stationary process. For 
this reason, we are going to cover the noise-corrupted image with 
subimages. The subimage size is chosen such as the subimages are 
assumed to be a texture. For each angle 9, we apply the proposed 
processing on subimages, with M x M pixels. Scanning all the 
image allows a complete processing. 

interest S(x, y). We can show: 

Figure 1: Subimages processing showing the overlapping between 
adjacent subimages 

When we compute the interpolation of a subimage, we find an edge 
effect Indeed, in rotating reference system %, the coordinates of 
the pixels localized on the edge of the subimage do not depend on 
the native subimage in reference system S. This edge effect being 
maximal for angle 9 equal to j, the subimage size after process- 
ing is AT x N, with JV equal to -^. To limit these edge effects, 
it is necessary to segment the native image to obtain subimages 
which overlap, as shown in figure 1. The gray areas correspond to 
the superposition of subimages. d and h coefficients represent the 
distance between the center of two adjacent subimages (in line or 
row) and the width of the overlapping area respectively. We have: 

d = 
N 

cos 9 + sin 9 
and A = 

TV sin0 
sin 9 + cos 9 

We now apply the interpolation-filtering method, proposed in the 
previous section, to each zero-mean subimage. Assuming that the 
noise is high-frequency compared to the signal, when we apply 
this processing to the whole noise-corrupted image with the same 
number Q of basis functions for each subimage, the resulting im- 
age may be smoothed or still noise-corrupted. Indeed, the signal to 
noise ratio is not the same for each area of the image. For this rea- 
son, we are going to process each subimage, with different number 
Q of basis functions. To find this number, let us consider mean 
square error e between reconstructed signal Z(x, y) and signal of 

= <T| + 
i   Q 

cl 
Nf   Nf 

■^DEECtf.«)8. 
fc=0 1=0 

So, for each subimage, we compute e for different values of param- 
eter Q (Q being in the interval [1; Qmax], such as AQmoal greater 
than 1). We only keep the Q walues, which minimize the mean 
square error. The noise power, cr%, will be computed in a homo- 
geneous area of the whole noise-corrupted image and the signal 
power, CT|, will be estimated in the subimage to be processed. 
Considering now the problem posed by the overlapping areas, nie 
corresponding processed pixels will be computed by averaging 
each pixel having the same position in the overlapping subimage. 

4. SHIP WAKES DETECTION 

To illustrate our processing, we have chosen to apply it to 
an image acquired by the Spaceborne Imaging Radar-C/X-band 
Synthetic Aperture Radar (SIR-C/X-SAR), which shows a moving 
ship and its dark turbulent wake. This image is presented figure 2. 

Figure 2: SIR-C/X-SAR image (698 x 698 pixels) 

The image size is 698 x 698 pixels. The number of gray levels is 
256 (0: black, 255: white). The dark patches in the upper right 
of this image correspond to smooth areas of low wind. The ship's 
wake is about 28 kilometers (17 miles) long in this image and in- 
vestigators believe that may reveal that the ship is discharging oil. 
Classically, to quantify the perturbation level of a SAR image, we 
determine its speckle level. This one is obtained by computing 
the variation coefficient (C in the following), obtained on several 
homogeneous areas of the image. Let W be the number of homo- 
geneous areas J„, we have: 

C = 
w 

whEV«Y 
For the studied image, the variation coefficient is equal to 0.277. 
We have now enough information about the studied image to pro- 
cess it 

4.1. Signal and noise auto-correlation functions 

We have seen that the interpolation-filtering method, presented 
in section 3, requires the a priori knowledge of the signal and the 
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noise auto-correlation functions. In order not to favor any particu- 
lar wake orientation, we have chosen to represent the signal auto- 
correlation function by an isotropic model. This one results, for 
different 9 values, from the averaging of several auto-correlation 
function computations of a two colors straight line placed in a ro- 
tating reference system. This model is presented figure 3.a. 

a: signal auto-correlation 

■a 

b: noise auto-correlatioo 

Figure 3: Normalized model for the signal and noise auto- 
correlation functions (T = 1) 

The noise auto-correlation function is presented in figure 3.b. This 
model has been obtained by averaging several realizations of noise 
auto-correlation functions computed in some homogeneous areas 
of the native image. 

42. Radon domain and wakes restoration 

After zero-meaning the image presented figure 2, we have pro- 
cessed it with a subimage size equal to 17 x 17 pixels, to respect 
the coherence length of the noise. 
We present in figure 4 the interpolated-filtered image for angle 9 
equal to 35°. For this image, number Q of basis functions is in- 
cluded between 1 and 13 depending on the native signal to noise 
ratio of the subimage to be processed (near 13 basis functions for 
the restauration of the wake and 1 basis function for the rest of the 
image). 

i*S^w»"^ ••!^*!«??v&* '"$:ÄraÄäs£i 
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Figure 4: SIR-C/X-SAR image in reference system Sc.35, (973 x 
973 pixels) 

Analyzing this figure, we see that the proposed processing allows 

a great reduction of the speckle and a good restitution of the signal 
of interest (the wake). Indeed, there is no more dark patches and 
the variation coefficient is now equal to 0.016, so there is an im- 
provement by a factor of 18 of the speckle level. 
We present in figure 5 the resulted image in the Radon domain. 
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Figure 5: Radon domain obtained using the interpolation-filtering 
method 

In the transform domain, the vertical axis represents the orienta- 
tion of each integration line, while the horizontal axis represents 
the distance of each line from the center of the image. The trough 
corresponding to the wake is clearly evident Its vertical position 
is near 51° and corresponds to the orientation of the wake. Fur- 
thermore, several sinusoidal curves of poor amplitude regarding to 
the trough amplitude are visible in the Radon domain and corre- 
spond to the Radon transform of the residual perturbations after 
interpolation-filtering. 
From this transform domain, we have used the inverse Radon trans- 
form to find the location of the wake in the spatial domain. This 
inverse transform has been applied to the image, presented in fig- 
ure 5, before raised to the power of three in order to improve the 
amplitude of the trough in regards to the rest of the image. The 
different interpolations have been made using a nearest neighbor 
interpolation. We present in figure 6 the resulted image. 
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Figure 6: Restored wake from figure 5 (696 x 696 pixels) 

The resulted image shows that our processing allows a great im- 
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provement of the wake readability. All the disruptive pixels have 
disappeared. The variation coefficient for this image is equal to 
0.002 compared to 0.277 for the original image. 

5. COMPARISON WITH CLASSICAL PROCESSING 

We present figure 7 the transform domain of the SIR-C/X- 
SAR image. Each image in the rotating reference system has been 
computed using a nearest neighbor interpolation. 

Figure 7: Radon domain obtained using the classical approach 

In the transform domain, we can see several overlapping sinusoidal 
curves. They are due to the presence of the speckle in the native 
image and they limit the visibility of the trough corresponding to 
the wake. Furthermore, the dark patches in the original image cre- 
ate in the transform domain a large sinusoidal curve with an am- 
plitude higher than the one of the trough. So, using a threshold to 
extract the trough will be misleading, because the minima of the 
transform domain do not correspond to the trough. In this case, the 
detection cannot be released with this processing. 

Figure 8: Restored wake from figure 7 (698 x 698 pixels) 

To illustrate the previous remarks, we present in figure 8 the result 
obtained after having applied the inverse Radon transform, with 
the same process as for the image presented in figure 6. It confirms 
that this processing is not efficient for such an image. Indeed, we 

remark a lot of perturbations, mainly due to the presence of the 
dark patches. The variation coefficient for this image is equal to 
0.145 and the improvement is only a factor of 2. 

6. CONCLUSIONS 

We have presented in this paper a new processing which allows 
ship wakes detection in SAR images. This processing is based on 
the computation of the SAR image Radon transform. The original 
contribution of this work, compared to the classical approaches 
in this domain consists in taking into account the noise for the 
image interpolation in the rotating reference system. This allows 
the perturbations to have a lower impact in the transform domain, 
the corresponding sinusoidal curves having an amplitude smaller 
than the peak or trough characteristic of the wake. We have com- 
pared the transform domain and the restored wake obtained by our 
processing on SAR images, with those obtained with the classical 
processing. In all cases, our processing presents far better results. 
With our processing, the probability of false alarm or no detection 
is lower than with the classical approach, because only the signal 
of interest is considered. 
An important drawback of the Radon transform is that it is global 
by nature, so this transform cannot tell the difference between long 
and short straight lines. For this reason, future work in this domain 
concerns the application of the proposed interpolation method for 
the computation of the localized Radon transform [2], which al- 
lows to localize the beginning of the wake. 
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Abstract 

Space-time adaptive processing (STAP) is two- 
dimensional adaptive filtering employed for the purpose 
of clutter cancellation to enable the detection of moving 
targets. It has been a major focus of research activity in 
radar applications for which the platform is in motion, 
e.g., airborne or space-based systems. In this setting, an 
antenna sensor array provides spatial discrimination, 
while a series of time returns or pulses form a synthetic 
array that provide Doppler (velocity) discrimination. 

The application of STAP for the mobile towed-array 
sonar system is non-trivial because of the complex multi- 
paths in the underwater environment. On the other hand, 
Matched-field processing (MFP) that uses a propagation 
code to predict the complex multi-path structure and 
coherently combines it to provide range/depth 
discrimination has been studied and demonstrated. MFP 
with a synthetic array (a series of snapshots) to estimate 
the source velocity and localize source in range and depth 
has also been demonstrated(1). 

STAMP combines the adjacent-filter beamspace post- 
Doppler STAP (2) and MFP to provide improved 
performance for the mobile multi-line-towed-array sonar 
applications. The processing scheme includes: 
transforming phone time snapshots into frequency 
domain, at each frequency bin forming horizontal beams 
in the directions of interest for each towed line, then 
combining signals from multi-towed-lines and adjacent 
Doppler bins and beams that cover the multipath Doppler 
spread due to motion using adaptive MFP. A study of 
STAMP performance in the towed-array forward-looking 
problem will be discussed. In this problem, the own-ship 
signal and its bottom scattered energy can be treated as 
stationary interference with a moving target at constant 
speed within processing interval of a few minutes. 

1. Introduction 

Element-space pre-Doppler STAP® is two- 
dimensional fully adaptive processing that coherently 
combines the signals from the elements of an array and 
the multiple snapshots of coherent signals, to obtain large 
spatial and temporal signal gain, to suppress interference, 
and to provide target detection in azimuth and velocity. 
Computational complexity and the need to estimate the 

interference from limited snapshots make it impractical. 
The adjacent-filter beamspace post-Doppler STAP is a 
reduced-dimension partially adaptive approach. It 
performs a Doppler filtering with a temporal Fourier 
transform and a spatial filtering with the conventional 
beamforming before adaptive processing. The adaptive 
processing is done in a selected sub-space including a few 
beams and a few Doppler bins. 

In the complex multi-path underwater environment, 
the signal will spread over many beams (especially when 
the array is steered away from broadside) and over many 
Doppler bins if a long estimation time is used. Without 
combining these bins a processor will encounter severe 
signal degradation. STAMP is different from the 
beamspace post-Doppler STAP in that it uses a 
propagation code to model the signal spread over beam 
and Doppler bins and coherently combines them. This 
new approach should provide improvement in signal 
estimation, while providing range and depth localization. 

Single-element pre-Doppler space-time MFP had been 
reported in ref.(l). In this work, we will study the 
performance of the beamspace post-Doppler space-time 
adaptive MFP through a simulation. In section 2, we will 
describe the STAMP processing and the simulation 
scenario for the forward-sector processing. The 
simulation results will be discussed in section 3, and a 
summary will be given in section 4. 

2. STAMP processing and Forward-Sector Processing 
Simulation Geometry 

Figure 1 shows the STAMP processing diagram for a 
multi-line array. It starts with the Fourier transform of 
phone time series *i(t) into frequency domain >fci(f), 
XkCf^rXkiCf) ... Xkn(f)] where k is the line index and 1 is 
the phone index. A conventional beamforming response 
bk(f,6) then is calculated at each frequency bin for each 
towed line. A long beam-space vector B(f) is formed 
with beam responses at selected beams and Doppler bins 
from all towed lines. The covariance matrix R is formed 
by the outer product of B(f) and ensemble averaged over 
a wide Doppler band. For MFP, replicas are generated 
with a propagation code and passed through the same 
Doppler processing and conventional beamforming, then 
forming the beam-space replicas. The adaptive weight 
vectors are calculated with the wide-band covariance 
matrix R and the beam-space replicas, then applied on 
each B(f) to get the adaptive narrowband response. It is 
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Figure 2: Wideband-Narrowband (WB/NB) Feedback-Loop White-Noise-Constrained (FLWNQ adaptive processing 

noted that STAMP will be the same as conventional 
STAP when one replaces the propagation code with a 
plane-wave signal model. 

Figure 2 shows the processing diagram of wideband- 
narrowband (WB/NB) Feedback-Loop White-Noise- 
Constrained (FLWNC) (3) adaptive processing. At each 
search cell, FLWNC iteratively adjusts the additive white 
noise until the white noise processing gain |w|2 falls 
within the constraints Si and cV The calculated adaptive 
weight then is used to filter snapshots at each Doppler 
bin. This is called wideband-narrowband processing 
because the weight is calculated with the covariance 
matrix that is ensemble averaged over a broader Doppler 
band and then it is applied to narrowband snapshots at 
each Doppler bin. 

Figure 3 shows the simulation geometry of forward - 
sector processing. The own-ship noise and its bottom 
bounce energy are treated as stationary broadband point- 
interference. The target at 90 m h depth broadcasts a 
narrowband signal and moves toward the tow ship with a 
relative speed of 6 kts. In the simulations, three array 
configurations were considered: single-Line, 4-Line- 
Sequential, and 4-Line-vertical. Each single-Line consists 
of 48 phones with a spacing of 2.25 m. The arrays are at 
a nominal depth of 90 m. The 4-Line-Sequential 
configuration connects four single-lines to form a long 
line. The 4-Line-Vertical configuration stacks 4 single- 
lines vertically with a vertical spacing of 10 m. 
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Figure 3: Simulation geometry, F=200 Hz, target(NB)=120 dB, own-ship(BB)=120 dB, bottom bounce (BB)=115 dB, 
white NL=120 dB, 0.1 random phase error, no environmental mismatch. 

3. Simulation Results 

From the conventional plane-wave beamforming of a 
single-Line, Figures 4 and 5 show beam/time responses 
(BTRs) and beam/Doppler responses of each signal 
component, respectively. The own-ship and the bottom 
interference arrive at relatively higher angles away from 
the forward endfire at 0°. The target component will be 
buried underneath the own-ship interference in the 
combined BTR, but with 256-sec integration time, it 
begins to separate from own-ship noise in the 
beam/Doppler response. The narrowband target signal is 
spread in Doppler and azimuth due to multi-paths that 
can be coherently combined with MFP to enhance 
detection and localization. This is the motivation of the 
STAMP study. 

The top two panels in Figure 6 show the plane-wave 
beam spectrograms for single-Line steered at 10° off the 
forward endfire. The high-angle own-ship noise leaks 
into this shallow angle and causes the high noise 
background in the conventional beam spectrogram, but is 
significant suppressed by the adaptive processing. The 
bottom left panel shows the STAMP track-cell-gram that 
tracks the target location and the bottom right panel 
shows the maximum response over Doppler. The 
STAMP uses beams of (f to 30° and 6 Doppler bins for 
6-kt search. It is noted that STAMP processing provides 
2-3 dB more signal gain than the plane-wave processing 
for single-Line and provides 8-9 dB more with 4Line- 
Vertical array. 

Figure 7 shows the range tracking performance of the 
STAMP. In the simulation the target starts at 10 km and 
moves toward the towed ship. With single-Line, the 
conventional MFP does not provide range discrimination 
of the target. With adaptive MFP, single-Line STAMP 
starts to show the target track that is closing in range. 
The 4Line configurations help to suppress the range 
sidelobes, and the 4-Line-Vertical array provides a better 
performance than the 4-Line-Sequential array. 

Figure 8 shows depth discrimination of STAMP range 
tracking with the 4-Line-Vertical array. The target track 
is formed only at the target depth of 90 meters. The 
target-related cascaded sidelobes are seen at other depths. 
Similarly, Figure 9 shows speed discrimination of 
STAMP range tracking with the 4Line-Vertical array. 
The target track is formed at the target speed of 3 m/s. 
Away from the target speed, the track becomes defocused 
and only target-related cascaded sidelobes are seen at 
search speeds far away from the target speed. 

4. Summary 

STAMP processing that combines STAP and MFP has 
been developed. Simulations show that STAMP 
coherently combines signal multi-path spread in azimuth 
and Doppler and greatly enhances the target detection as 
well as providing target range and depth classification and 
localization. In a future study, we will address how 
robust STAMP is against array shape error, frequency 
mismatch, and environmental mismatch as well as how 
STAMP performs in other tactical scenarios. 
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ABSTRACT 

We examine the problem of passive localization of a mov- 
ing target in a littoral environment, based on its depth and 
range-rate. We compare performance with the conven- 
tional matched field processor, which localizes in depth 
and range. Range-rate localization is more robust with re- 
spect to uncertainties in the environment, and with respect 
to associated uncertainties in the horizontal wave num- 
bers of the channel modes used for the matched field tar- 
get response. In our approach the complex amplitudes of 
the modes are treated as nuisance parameters, which com- 
prise a hidden, first-order Markov state process. In lieu of 
an analytic expression for the evolution of the likelihood 
function as new snapshots are integrated, we evaluate a 
method of particle filtering, or sequential resampling. 

1. INTRODUCTION 

Matched field processing (MFP) techniques localize targets 
in shallow water environments by computing a replica vec- 
tor based on channel modes associated with a given set of 
environmental parameters, including the sound-speed pro- 
file [3]. They typically suffer from high sidelobes and am- 
biguous peaks produced at ambiguous ranges and depths, 
a problem that is exacerbated by environmental uncertain- 
ties. Modifications to the MVDR beamformer have been 
proposed to make it more robust to these uncertainties, by 
constraining the weight vector to stablilize its response over 
an ensemble of environments [1]. An additional problem 
is target motion, which spreads the target peak, decreasing 
its visibility. Previous work on target motion has focused 
on applying a transformations to successive data snapshots 
that compensate for motion corresponding to a particular 
hypothesized velocity, resulting in a focused peak in the 
range-depth ambiguity surface for a target having that ve- 
locity [2] . The main idea of this paper is to view target 

This work was supported by the Office of Naval Research under Con- 
tract No. N00014-01-1-0119. 

motion as an asset rather than a liability, and to jointly es- 
timate depth and range-rate in a manner that not only com- 
pensates for target motion, but also enhances robustness to 
environmental uncertainty. We propose to implement this 
by constructing a state model for the replica vector, using an 
assumed target velocity to constrain the state evolution, and 
leaving the initial state, which depends on target range, as a 
nuisance parameter. Because we do not have a closed-form, 
analytic solution for the updating of the likelihood function 
that arises from this state model, we instead examine a non- 
parametric method of approximating the likelihood, a se- 
quential resampling or "particle filtering" method [4,5]. 

2. MATCHED FIELD PROCESSING 

Matched field processing obtains a replica vector for a target 
in shallow water based on the Green's function for the target 
response. For a shallow water environment, the response at 
the nth sensor can be expanded in terms of the eigenmodes 
of the channel as follows [6,7]: 

M 

Sk(n) = ]T 
2ir 

ri V kT(m)r 
ipmMipmWexpi-j kT(m) ■ r). 

(1) 

Here k, m, and n index the time of the snapshot, the mode 
number, and the array sensor number, respectively. The sum 
is over the M eigenmodes ij)m{z) supported by the chan- 
nel, where z is the depth coordinate. The eigenmodes are 
sampled at c„, the depth of the nth sensor, and at d, the 
depth of the target. The amplitude of the mih mode includes 
a phase factor proportional to the product of its horizontal 
wave number kr(m) and the target range r. Rewriting this 
expression in terms of the JV-dimensional replica vector s*, 
where N is the number of hydrophone sensors, we have: 

sjt(d,r)=*(c)[^(d,r)©xfc(r)], (2) 

where © denotes the Hadamard, or element-by-element, vec- 
tor product. Here the nth element of s^ is Sk (n), the (n, m) 
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element of ^ is */>m(cn), and the mth element of 4>{d,r) 
is y kJtm)r^"i(d)- Tne modal phases have been collected 

into a vector Xj. (r), whose mth element is given by 
exp(-j kr(m)) - r). 

If the target is presumed to be stationary, so that the 
replica vector is constant across a window of K snapshots, 
sk = s, then summing over the matched-filter output of K 
snapshots yields the conventional matched field processor, 
or Bartlett estimate [8]: 

K /_, 
Uhh 

fc=l 

(3) 

where Rj,y = ^ £t 2/t2/*>is *e samPle correlation matrix 
of the data. 

This estimator is also justified by the likelihood of the 
data, as a function of depth d and range r, over the window 
of snapshots, if the data has the random model y = a^s + 
nk. Here the signal has a Gaussian distributed complex am- 
plitude ak ~ CN[0, a*], and there is additive white mea- 
surement noise n* ~ CN%o%I\. Then by using Wood- 
bury identities (a brief derivation is reproduced in in Ap- 
pendix 3.7 of [9]), the likelihood of the kth snapshot can be 
shown to be 

f(yh\s(d,r)) 

•exp< - 2*2* 

{■*a2)N (l + £|sts) 

(4) 

Conditioned on s, all the data vectors «/are independent 
and share the same likelihood. In the high SNR limit, a\ » 
a£, their joint log-likelihood, as a function of (d, r), is pro- 
portional to the Bartlett estimate of Equation 3. 

An alternative approach, the M VDR beamformer or Capon 
spectrum, has advantages for suppressing interfering sources 
and sidelobes. However it is more sensitive to target nulling 
if the presumed target replica vector is mismatched with re- 
spect to the true target response. In this work we investi- 
gate robustness with respect to errors in environmental pa- 
rameters, which can produce target mismatch. We evalu- 
ate our Moving Target Depth Estimator (MTDE) and the 
Bartlett estimator, or conventional matched field processor, 
as a baseline estimator for comparison. 

3. TARGET MOTION, ENVIRONMENTAL 
MISMATCH, AND DEPTH AMBIGUITY 

Two phenomenon which degrade the performance of the 
Bartlett estimator are target motion and environmental mis- 
match. Here we examine the scenario in which a target is 

moving in range at a constant velocity and constant depth. 
Target motion tends to smear out the peak target power across 
range, reducing peak height and the effective post-beamformer 
SNR. An example realization of an ambiguity surface is 
shown in Figure 1, where the target has moved from 10 to 
10.5 km over 50 snapshots spaced two seconds apart, as in- 
dicated by the white line segment bounded by stars. Note 
that there are ambiguous peaks at other ranges at the same 
depth as the target (20m), but also at a depth of about 83m. 
(The cause of the ambiguous depth will be discussed below.) 

Environmental mismatch produces mismatch of the replica 
vector s. The replica vector is a function of both range and 
depth, but it is range localization that seems to be more se- 
riously affected by mismatch, as shown in Figure 2. To un- 
derstand this, consider Equation 2. The depth dependence 
is contained in the vector £, the mode amplitudes sampled 
at the source depth. This vector also has a global scaling 
inversely proportional to range; the average range effec- 
tively scales the signal power a\. The primary dependence 
on range is contained the vector of modal phases x*, each 
phase being proportional to the product of the horizontal 
wavenumber and the range, kr(m) ■ r. A small mismatch 
in the wavenumber kT(m) can cause a big mismatch in the 
phase, as it is multiplied by a range r than can be on the 
order of several kilometers. 

Our initial investigation of environmental mismatch is 
based on the simple Pekeris model, with a uniform sound- 
speed in the water channel, and in the ocean bottom [6, 7]. 
Mismatch is implemented by using the Pekeris model to 
generate synthetic data, then perturbing the vertical wavenum- 
bers kz assumed in processing the data and forming an am- 
biguity surface. The wavenumbers are perturbed by a uni- 
form random variable whose extent we express as a fraction 
of ^, the approximate spacing of the vertical wavenum- 
bers, where h — 100m is the depth of the water column. 
Then the assumed modes %l)m{z) and horizontal wavenum- 
bers kr = v'fco ~ &Z are computed accordingly. For ex- 
ample, in Figure 2, they are perturbed by ±4.5 f, the total 
range of the perturbations being 0.9 jr. Note that while the 
range information has been lost, there is still significant en- 
ergy distributed, across several ranges, at the correct depth 
of 20m and at an ambiguous depth of about 83.5 m 

To see the source of the depth ambiguity, refer to Fig- 
ure 3, in which we plot 0(d) at d = 20m and d = 83.5m, as 
well as the magnitude of 0(d). While the amplitudes of the 
modal phases are different at the two depths, undergoing a 
relative sign change every other mode, the magnitudes are 
approximately equal. The sign change can be compensated 
by a corresponding sign change in the modal phase vector 
xk, which may occur at another range, as seen in both Fig- 
ures 1 and 2. For a "perfect" constant-index waveguide, in 
which the modes are sinusoidal, and the amplitudes go to 
zero at the bottom, the ambiguity is exact. In this special 
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case the modes are sinusoidal, given by sin( ^m). Now let 
us try to identify two depths d\ and cfe at which the mag- 
nitudes of the modes are equal. Equating the magnitudes 
yields 

2,7rdi 
sm (—— m) 

h 
sin (—— m) 

h 
2-Kdi .2-Kth 

cost—;—m) =   cos(—-—m). 
h h 

(5) 

Using the fact that discrete-time sinusoidal signals of the 
form exp(iurni) are the same for frequencies u that are sep- 
arated by an integer multiple of 1-K, we have the following 
solution: 

2ndi      2-Kdi 
—:— ± —:— = ^T d\ — di — h. (6) 

Thus depth values that are symmetric about the the middle 
of the water channel are potentially ambiguous. The am- 
biguous depth shown in Figure 3, ~ 83.5m, is a little bit 
deeper that the depth predicted by Equation 6,80m, since a 
more realistic "soft" boundary condition is used that causes 
the eigenmodes to be non-zero in the sediment bottom, and 
also decreases their vertical wavenumbers, "stretching" them 
slightly. 

4. STATE MODEL FOR TARGET MOTION 

We wish to accommodate target motion, and discard the pre- 
sumption of stationarity of the replica vector used in obtain- 
ing the Bartlett processor (sk = s). We accommodate mo- 
tion by using a hidden state process, where the state is given 
by the modal phases xk of Equation 2: 

£* = A(r)(ujt©xJfe_1). (7) 

Here the state transition matrix A(r) is a diagonal matrix of 
phase factors, with the mth element being given by 
exp(— j kr(m)-rAt), where r is range-rate/horizontal-velocity, 
and At is the time between snapshots. The initial phase vec- 
tor £Q is unknown. So what is assumed known in this model 
is not the initial range of the target, but only the change in 
range, or range-rate. The state-noise vector u* consists of 
small phase perturbations. Its purpose is primarily to relax 
slightly the constraint imposed on the state sequence by the 
presumed horizontal wavenumber kT(rn), which may have 
errors. 

Denote the data matrix having the first k data vectors as 
its columns by Y*. Our goal is then to update the cumla- 
tive likelihood of the data, given a depth and range-rate pair 
f(Yk\r, d), as we acquire new data vectors y_ . If the state 
vectors and the measurement vectors were both Gaussian, 
with linear transition matrices, then we could apply the ex- 
pressions of Kaiman filtering. The Kaiman filter equations 

provide expressions for a state prediction, measurement pre- 
diction, and state update; these are the conditional means 
of the densities f{xk\Yk^), f(yk\Yk^), and /(xJYt). 
The Kaiman equations also yield expressions for the error 
covariances associated with the estimates, which are the co- 
variances of the three densities. The conditional means and 
covariances are then enough to characterize the densities, 
since the densities are Gaussian. So rather than viewing 
the Kaiman filter as merely updating state estimates, we can 
view it as updating these densities, needed in turn to update 
the likelihood. In standard applications of Kaiman filter- 
ing, parameters of interest, such as target range and velocity, 
comprise the state vector, and state estimates will suffice. In 
the application discussed here, the state consists largely of 
nuisance parameters; the parameters of interest must be in- 
ferred from the cumulative likelihood function f(Yk\r, d) 
estimated from approximations to these densities. 

5. SEQUENTIAL RESAMPLING FOR STATE 
ESTIMATION 

In lieu of an analytic expression for the updated likelihood, 
we employ a method of sequential resampling [4, 5]. This 
represents the densities parametrically, by a collection of 
samples, known as "particles." Loosely, we can think of the 
method as evolving histograms of samples, rather than ana- 
lytic density expressions. The process is as follows [4]: at 
time-step k, we have some (prediction) samples x^ which 
are distributed as /(xjtlYjt-i). The first step is to scale, 
or weight, these samples according to the likelihood of the 
kth data snapshot. The weights are proportional to this like- 
lihood, and normalized to sum to one: 

„W = f(ytkl{i)) 

Ef/feJsT) 
(8) 

For our application, the likelihood was obtained by substi- 
tuting Equation 2 into Equation 4. In the second step, the 
samples are resampled with a probability given by the like- 
lihood, to yield a new set of (update) samples x?k, which are 
distributed as /(x^Y*): 

Prob[x^=x^]=W«. (9) 

After this step, one typically has a significant number of 
samples x| that are identical/degenerate, since they corre- 

spond to prediction samples x^ that have high weight val- 
ues. In the third step, the samples are translated according 
to the state transition equation, and state noise is added . 
This produces new prediction samples: 

= a(4' .id0) (10) 
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(the state noise ujj? has the side effect of differentiating de- 
generate samples). One approach is to run separate estima- 
tors, or "particle filters," in parallel, one for every hypoth- 
esized range-rate and depth (r, d). Then the likelihood for 
each (r, d) pair can be approximated as follows: 

f(yJYk-i;f,Q    =   j dxkf{y_k\xk-r,d)f(xk\Yk^-f,d) 

- Ef(ykkl{i)^d). 
i 

And the cumulative likelihood is given by 

01) 

N 

f(Yk\r,d) = JJ f(yk\Yk_i;r:d). (12) 
fc=0 

In practice, running parallel particle filters is likely to be 
computationally prohibitive. For example, 100 grid points 
in both depth and range would require 10,000 parallel es- 
timators, each requiring a set of samples to represent the 
likelihood. 

An alternative approach is to include the parameters of 
interest, in this case (r, d), in the state vector, with a uni- 
form prior. Then an ambiguity surface may be obtained by 
plotting the marginal histogram of the update samples x£, 
which are distributed as /(x* \Yk). The marginal histogram 
gives an approximation to f(r, d\Yk), which with a uniform 
prior on (r, d) is proportional to the likelihood f(Yk\r, d). 
A difficulty of this approach in practice is that the sequential 
resampling techniques tend to display the behavior of com- 
petitive dynamical systems (see, for example, [10]). That is, 
even if two sample regions have an equal level fitness with 
respect to the likelihood, over time one of them will tend to 
"win", and monopolize the samples. In our investigation we 
observed that with a target at 20m, some trials would show 
a peak at 20m, while other trials would show a peak at the 
depth ambiguity of 83.5m. So the ambiguity surface of a 
single trial does not reflect the intrinsic ambiguity over the 
ensemble of trials; it gives an over-optimistic picture of the 
ambiguity surface, and misleading in this respect. 

To alleviate this problem, we chose a hybrid approach, 
putting velocity in the the state vector, but leaving depth, 
which we treat as the parameter of primary interest, out 
of the state vector. This requires a separate particle filter 
for each hypothesized depth. We chose 100 grid points in 
depth, leading to 100 corresponding particle filters. The his- 
togram of particles at each depth provides an estimate of 
/(^lYjbd). At each depth, we can use the equivalent of 
Equation 12 in order to obtain the likelihood: 

Assuming a uniform prior on d, then normalizing this with 
respect to d provides an estimate of f(d\Yk). We can then 
compute an ambiguity surface as 

f(r,d\Yk)=f(r\Yk,d)-f(d\Yk). (14) 

Again, with a uniform prior on (r, d), this posterior density 
is proportional to the likelihood f(Yk\r, d). 

To combat the problem of degeneracy of samples we 
implemented an approach suggested in [4]. Namely, in the 
state prediction step, additional state noise was added to dif- 
ferentiate degenerate samples. Since range-rate r was in- 
cluded in the state, noise was added to the range-rate values, 
with a standard deviation of 0.2 m/s. In addition, the 5% of 
the samples with the largest weights were automatically re- 
tained for the next step, to mitigate against losing a sample 
value on the basis of a single snaphot only. 

6. SIMULATION AND RESULTS 

Figures 4 and 5 show two ambiguity surfaces obtained in 
this manner, for a surface and submerged target, respec- 
tively. The SNR per sensor element was set at 0 dB. At 
each hypothesized depth we ran a particle filter with 500 
samples or "particles". Depth estimates were obtained by 
taking the maximum of f(Yk \d). Histograms of depth es- 
timates for a surface target, obtained from 100 trials of the 
Bartlett estimator and the MTDE estimator, are shown in 
Figure 6. Similar histograms are shown for a submerged 
target at a depth of 20m in Figure 7. Note the ambiguity 
at a depth of about 83.5m. Because we run parallel particle 
filters for all hypothesized depths, the ambiguity surface for 
a single trial of the MTDE estimator, as in Figure 5, diplays 
this ambiguity. 

To investigate the robustness of the estimators with re- 
spect to environmental uncertainty, the probability of cor- 
rect localization (PCL) of the target is plotted versus in- 
creasing environmental uncertainty in Figure 8. The region 
of correct localization includes ±2m around the true tar- 
get depth, and around the depth ambiguity. As discussed in 
Section 3, the vertical wavenumbers in the estimator were 
perturbed by a uniform random variable whose range is ex- 
pressed as a fraction of jjj. The PCL is plotted as this frac- 
tion is increased from 0 to 1.5. This environmental per- 
turbation does not significantly degrade the localization of 
the surface target, but it does degrade the localization of the 
submerged target. The degradation is not as severe for the 
MTDE estimator as it is for the Bartlett estimator. 

f(Yk\d) = ijf(yk\Yk_i;d). (13) 
t=o 
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7. CONCLUSIONS 

In this paper we have investigated an approach of joint esti- 
mation of range-rate and depth, rather than range and depth. 
Range-rate provides another dimension with which to dis- 
criminate targets against interfering sources (such as mov- 
ing ships). In addition, discrimination based on range-rate 
is more robust with respect to environmental uncertainties, 
as verified by simulations. In lieu of an analytic expression 
of the updated likelihood, we have investigated a technique 
of sequential resampling or particle filtering. The limitation 
of this particular technique seems to be its ability to com- 
pensate for low SNR by integrating over many snapshots. It 
should be emphasized, however, that this is a limitation of 
the particle-filter implementation investigated here, and not 
a limitation of the basic state-model approach of localizing 
with respect to range-rate and depth, rather than range and 
depth. Our future work will be focused on implementations 
that more effectively exploit the entire data history. 
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ABSTRACT 
An approach is developed for adaptive beamforming for mobile 
sonars operating in an environment with moving interference 
from surface shipping. It is assumed that the sound source of 
each ship is drawn from an ensemble of Gaussian random noise, 
but each ship moves at constant speed along a deterministic 
course. An analytic expression for the ensemble mean 
covariance is obtained. In practice the location, course, speed, 
mean noise level, and transmission loss of each interferer are 
not known with sufficient precision to use the modeled ensemble 
mean as a basis for adaptive beamforming. The problem is thus 
to accurately estimate the ensemble mean based on data 
samples. The analytic ensemble mean is not stationary, and 
thus is not well estimated by the sample mean. The ensemble of 
covariance samples consists of rapidly varying random terms 
associated with the emitted noise and more slowly oscillating 
deterministic terms associated with the source and receiver 
motion.   The non-stationary ensemble covariance mean can be 
estimated by filtering out the rapidly varying noise while 
retaining the slow oscillatory terms. Performance of the filters 
can be visualized and assessed in the "epoch "frequency 
domain, the Fourier transform of the covariance samples. In 
this domain, higher bearing rates show up at higher 
frequencies. The traditional sample mean estimator retains only 
the zero-frequency bin corresponding to stationary 
interference. Techniques that can identify and include the 
appropriate non-zero frequency contributions are better non- 
stationary estimators than the sample mean.   Several such 
techniques are offered and compared. Simulations are 
invaluable in evaluating the filter performance, since the 
ensemble mean can be precisely calculated analytically in the 
simulation, and compared directly with the sample estimates. 
Simulations of adaptive beamformers using covariance filtering 
will be shown to yield improved robustness to shipping motion. 

1.        INTRODUCTION 

At low frequencies, underwater noise is dominated by 
shipping sources. These sources can be extremely loud, 
and can dominate the performance of low-frequency 
passive sonar systems. Since these sources are typically 
spatially discrete, adaptive techniques ought to apply to 
eliminate their influence when surveillance is performed in 
locations in between the loud ships. Unfortunately, the 
shipping sources are moving, and hence violate the 
stationary noise assumptions of current adaptive 

techniques.   Current implementations of adaptive 
beamformers often do not achieve much gain above 
conventional, non-adaptive beamformers and hence remain 
limited by the loud sources of interference. Here we 
suggest a new class of techniques that may robustly 
achieve the rejection of loud sources of moving 
interference. 

2.        PHYSICAL MODEL OF SHIPPING 
NOISE 
Current adaptive techniques are based on the physical 
assumption that the sources of interference are stationary 
in space. This is clearly not valid for the case of moving 
ocean shipping sources. Hence, we must develop a new 
physical model for the interference in order to derive the 
appropriate adaptive processing. 

2.1 Pressure Field 

Begin by assuming an arbitrary set of ships under 
deterministic motion in an arbitrary underwater sound 
channel. We focus on a single frequency, with the 
assertion that the model can be extended to the broadband 
case by a straightforward summation across frequencies. 
In the selected frequency bin, it is reasonable to model the 
sound source of each ship by a draw from an ensemble of 
complex Gaussian random noise, and assume that the 
noises of different ships are fundamentally independent 

These sources are then propagated to each receiver array 
element. The propagation may be described by a coherent 
sum over modes [ 1 ].   In a range independent environment, 
these modes arise naturally with the use of a normal mode 
propagation model. In range-dependent environments, the 
propagation can be expanded as a sum of local modes in 
the vicinity of the receiver. This local mode expansion is 
explicit via the use of coupled or adiabatic mode 
propagation models, but in principle can be obtained from 
the field output of any propagation modeling technique. 
The received acoustic pressure pn at the nth element in an 
array is a sum across ships of the sum over the local 
modes: 
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Pn=YSLSJAmn (t)e **'/.&> 

where Sj is the source noise sample, A^ is the mode 
amplitude and km is the wavenumber of the mth mode, and 
rjn is the range from the jth ship to the nth receiver element. 
Note that the mode amplitudes must incorporate cylindrical 
spreading and attenuation terms not given explicitly here. 
The pressure consists of random contributions from the 
ship noise sources and deterministic time-varying 
propagation contributions. 

2.2       Covariance 

Optimal adaptive processing is determined from the mean 
of the covariance among sensor pressures. This 
expectation must be taken across the random ensemble of 
ship sources. The ensemble-mean covariance will be a 
function of time because of the time varying propagation 
terms. Therefore the expected covariance cannot be 
obtained directly from a sample mean across time samples 
of the covariance.   Using the independence of different 
ships an analytic expression for the ensemble covariance is 
obtained: 

xA    A     e^k" 0°'(0_t"2 °°2 (°) 
Ttt\Tl\      HJ2/J2 

where the brackets indicate the expectation across the 
ensemble.   The term <Sj Sj*> is the power spectrum of the 
jth source. 

If the ranges, propagation modes, and source level power 
spectra were all known, this model expression could be 
calculated at each time and used in a standard minimum 
variance distortionless response (MVDR) full-rank ABF 
[2, 3]. This approach might be termed the full knowledge 
a priori model-based MVDR method. Such an ABF 
would move its nulls in time to optimally reject noise from 
all the moving ships. Unfortunately, it is unlikely in 
practice that full knowledge will be available a priori. 
Precisely predicting the propagation structure is quite 
difficult given the spatial and temporal variability of the 
ocean. It is also unlikely that the exact source power 
spectra will be known for every contributing ship. Thus, 
we usually must attempt to estimate the unknowns in the 
ensemble mean covariance from data samples. 

3.        ALGORITHMS 

Since the ensemble mean involves deterministic time- 
varying terms, it cannot be reliably estimated directly from 
a sample mean taken over time. In particular, the 
oscillatory nature of the exponential terms will produce a 

sample mean that tends to zero over long estimation times, 
while the ensemble mean is significantly larger. To avoid 
underestimating the ensemble mean, alternatives to the 
sample mean are considered. 

3.1 Fourier Analysis and Synthesis 

An alternative to sample averaging is to apply fourier 
analysis to covariance samples. One motivation for this 
approach is to separate the differing time scales involved. 
The random source noise varies rapidly from one sample 
to the next. This rapid variation produces a sample noise 
that is nearly white. This sample noise will corrupt 
estimates of the ensemble mean covariance unless it is 
removed. The deterministic amplitudes and phases from 
the propagation terms vary more slowly and continuously 
in time. A low pass filter is expected to separate the 
rapidly varying sample noise from the slowly varying 
propagation terms. Since filter behavior is often best 
analyzed in the frequency domain, this motivates 
transforming the covariance samples to a corresponding 
frequency domain. This domain will be referred to as the 
epoch frequency domain to distinguish it from the acoustic 
frequency. 

A second motivation for considering the Fourier transform 
of the covariance samples can be obtained by considering 
the time dependence of the propagation terms. The 
propagation amplitudes typically evolve very slowly in 
time, and this variation made be neglected for the moment. 
The most rapidly changing term is the phase term due to 
the changing ranges to the interference sources. Expand 
the ranges in a Taylor series about some reference time: 

r = rQ +rt + ... 

where rO is the range at the reference time t=0 and r is the 
initial range rate of the source. Again for the moment, 
higher order terms will be neglected. The ensemble 
covariance can now be approximated by 

{p«p* *) =XXX(*ä *H,nA«2 
j    mi    m2 

Vg'\*i*irM0   km2
rjn20)    i\kmirjnx~km2''jn2 F 

In this form, the unknowns: source power spectra and 
propagation amplitudes are coefficients of sinusoidal 
complex exponentials with epoch frequencies 

Q = kmt 
rjni ~ km2''"jn2 ■ This suggests that these unknown 

coefficients can be estimated by Fourier analysis. Once 
the coefficients are estimated then the original time series 
for the ensemble covariance is reconstructed via Fourier 
synthesis. 

The overall approach is summarized as follows. First 
obtain time samples of the elements of the covariance 
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matrix, as is currently done in ABF. For each matrix 
element, transform the time samples of covariance to the 
epoch frequency domain. Identify the appropriate 
frequencies associated with the moving ships, and use 
those frequency coefficients to synthesize the ensemble 
mean time series. The only portion of the algorithm 
remaining to specify is the technique of identifying which 
frequencies in the epoch domain are associated with the 
shipping noise sources and which are dominated by sample 
noise. Several methods can be employed. 

3.2 Covariance Low-pass Filtering Methods 

Since ships generally do not change range significantly 
wimin a few time samples, the shipping noise is expected 
to nearly always occur in the lowest frequency bins of the 
epoch frequency domain, while sample noise is expected to 
be nearly white across all bins. Hence, appropriate low 
pass filters are expected to retain much of the shipping 
noise energy to be estimated, while rejecting the sample 
noise. The best selection of pass band is made based on 
the expected motion of the contributing ships. Current 
ABF algorithms that employ the sample mean are in fact 
an example of covariance low pass filtering, since the 
sample mean is the low pass filter that retains only the 
spectral power in the zero-frequency bin. The 
performance of any low pass filter can be improved by 
matching the filter width to the expected epoch frequency 
widths associated with typical ship motion. For rapidly 
moving ships, this can be achieved by retaining more 
frequency bins in the filter. In order to further improve 
over current algorithms, advantage must be taken of the 
specifics of the epoch frequency structure of the shipping 
noise. 

The epoch frequency for each ship given above depends of 
the difference of the products of a wavenumber times a 
range rate. Underwater acoustic wavenumbers of the 
significant modes generally do not exhibit much spread. 
Furthermore, for operational horizontal line arrays, the 
interfering ships will almost always occur at ranges 
significant relative to the horizontal separation between 
array elements. In these cases the epoch frequency where 
a ship contributes can be approximated by 

Q = fcoAx0sin0 

where ko is a reference wavenumber, Ax is the horizontal 
separation between elements, 6 is the bearing to the ship 
(relative to the line between the elements), and 0 is the 
bearing rate. Note that the epoch frequency increases 
approximately linearly with separation between elements. 
This suggests a second filtering approach, in which the low 
pass filter frequency width is increased linearly 
proportionally to separation. Elements near the main 
diagonal of the covariance matrix are less affected by 
source motion, and hence can be estimated with narrower 

low-pass filters. The most separated elements at the 
farthest corners of the matrix are the most subject to source 
motion, and require the highest bandwidth low-pass filter. 
The maximum bandwidth can be selected to match the 
highest bearing rate typically encountered. 

3.2 Covariance Band-pass Filtering Methods 

Further improvements in estimation may be potentially 
obtained by retaining only those epoch frequency bins 
containing significant shipping noise. One method 
involves partial knowledge available a priori. When the 
locations and tracks of the significant ships are 
independently known, for example from radar surveillance, 
then the bearing rates can be calculated and the epoch 
frequency bins identified. The energy in the identified bins 
then represents estimates of the unknown propagation and 
source level terms.   Fourier synthesis using only the 
identified bins produces the desired covariance time series. 
The entire process can be described as a set of band pass 
filters, where each narrow pass band is selected based on 
the knowledge a priori of the bearing rates. 

When no knowledge is available a priori, the potential 
exists to take advantage of the linear dependence on 
separation. Energy from each individual ship will lie along 
a line in the separation-epoch frequency plane. Line 
detection methods in this plane have the potential to 
automatically identify the appropriate bearing rates 
associated with significant interfering energy. Such 
methods may include Radon or Hough transforms [4]. 
Once the appropriate bins have been identified, band pass 
filters can be constructed to filter the shipping noise from 
the sample noise. 

4.        SIMULATION 

A simulation was performed to demonstrate the potential 
utility of these techniques.   In the simulation, the exact 
ensemble mean can be calculated since all quantities are 
known. Adaptive processing based on this exact mean 
covariance gives an upper bound to the maximum 
performance that could be achieved, if, for example, 
perfect knowledge were available a priori.  In addition to 
the ensemble mean, the simulation generated time samples 
of covariance from four moving ships with Gaussian noise 
sources. The ships were moving at realistic speeds from 
between 10 and 20 knots. The tracks of the ships are 
shown in figure 1. Noise from the ships was propagated 
with cylindrical spreading in a single mode underwater 
channel. The noise was received on a line array of 50 
elements with a design frequency of 60 Hz. The 
simulation was performed at this design frequency. 
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Figure 1. Tracks of the four ships in the simulation 
relative to array at origin 

The simulation calculated the conventional beamformer 
response and compared with various M VDR beamformer 
responses for a set of beams spanning all azimuths. The 
beamformers used various estimates of the ensemble mean 
covariance. In addition to the exact ensemble mean, the 
ABF based on the sample mean and the ABF based on an 
element dependent low-pass filter were simulated. Results 
of the simulation are summarized by cumulative 
distributions of noise across all beams shown in figure 2. 
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Figure 2. Cumulative distributions of noise for various 
beamformers 

The sample mean ABF performed almost no better than 
conventional non-adaptive ABF in the simulation. The 
sample mean was unable to properly capture the motion of 
the ships, and hence was unable to place nulls in the proper 
locations to cancel the ship noise. The element dependent 
ABF filtered sample covariance showed a median 
improvement of about 5 dB reduction in the noise over the 
sample mean approach. The perfect ensemble mean 
displayed 10 dB reduction in noise beyond the sample 
mean method. 

5.        CONCLUSIONS 
The problem of adapting in the presence of moving 
sources of interference was considered. Application was 
particularly addressed to the motion of interfering surface 
ship noise for passive sonar arrays. The physics of ship 
motion was modeled, including the received noise field 
and the noise covariance matrix. An analytic expression of 
the ensemble mean covariance was obtained. This 
physical model suggested a new approach of covariance 
filtering to better estimate the ensemble mean covariance 
from data samples. 

Two paradigms of current adaptive beamforming may need 
to be abandoned in the presence of interference motion. 
First, the sample mean may not be the appropriate 
estimator when the interference sources are in motion. 
Second, the covariance matrix may not be treated as a 
single entity, since motion affects different elements of the 
matrix differently. 

The behavior of the covariance under interference motion 
can be visualized in the epoch frequency domain. This 
domain is the Fourier transform of the samples of the 
covariance matrix. It was observed that energy from each 
moving ship falls along an approximate line in the epoch 
frequency / element separation plane. Several methods for 
obtaining improved estimates of the ensemble mean 
covariance were suggested. Preliminary investigations of 
relative performance of a few of these methods were 
obtained via a simulation. 

Much remains to be done to develop these methods further. 
There is great potential for refinement of the algorithms 
and development of better filtering techniques. The epoch 
frequency domain has only begun to be explored. Line 
detection techniques have yet to be attempted. It has been 
suggested that the covariance matrix may also have a near- 
toeplitz structure in the epoch frequency domain [5]. If so, 
then toeplitz averaging, or low-pass filtering along the 
toeplitz directions may provide additional rejection of 
sample noise. Finally, applications of this class of 
techniques to real data are certainly warranted. 
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ABSTRACT 

A beamspace adaptive beamformer implementation for 
the rejection of cable strum self-noise on passive sonar 
towed arrays is presented The approach focuses on the 
implementation of a white noise gain constraint based 
on the scaled projection technique due to Cox et al 
[IEEE Trans, on ASSP, VoL 35 (10), Oct. 1987]. The 
objective is to balance the aggressive adaptation 
necessary for nulling the strong mainlobe interference 
represented by cable strum against the conservative 
adaptation required for protection against signal self- 
nulling associated with steering vector mismatch. 
Particular attention is paid to the definition of white 
noise gain as the metric that reflects the level of 
mainlobe adaptive nulling for an adaptive beamformer. 
Adaptation control is subsequently performed through 
the implementation of a constraint on maximum 
allowable white noise gain at the output of the adaptive 
processor. The theoretical development underlying the 
scaled projection based constraint implementation is 
reviewed Towed array data results depicting the 
performance gain of the new ABF algorithm optimized 
for strum cancellation relative to that of a more 
conservative baseline ABF algorithm are presented 

1. INTRODUCTION 

Hydrodynamic self-noise on passive sonar towed arrays 
has been a well-known performance-limiting factor for 
ocean acoustic source detection at low frequency [1]. 
High wavenumber mechanical vibrations are induced in 
the array by vortex shedding associated with 
hydrodynamic flow over the array body and cable scope. 
These vibrations are know to couple into the hydrophone 
array as coherent acoustic noise sources and can impair 
acoustic detection performance, particularly in the 
forward endfire direction. As a direct consequence of its 
spatially coherent nature, it has been shown that cable 
strum  noise  effects  can  be  mitigated  via  adaptive 

processing [2]. In this work, a new approach to coherent 
strum noise mitigation, based on a beamspace adaptive 
beamformer (ABF) architecture with a white noise gain 
constraint (WNGC) that emphasizes mainlobe 
interference nulling is introduced. Finally, data results 
illustrating the performance improvement over an 
existing beamspace ABF algorithm that emphasizes 
robustness to mismatch-induced self-nulling are 
presented. 

2. THE PHYSICS OF CABLE STRUM 

2.1 Vortex shedding 

When an array is subject to hydrodynamic flow with a 
component normal to its axis, a wake is formed. When 
the velocity of the transverse flow increases beyond a 
certain threshold, eddies, or vortices, begin to form and 
separate from the wake. Eventually these vortices shed 
from the wake in an asymmetric fashion [3]. This 
asymmetric shedding imparts an oscillatory lift force 
locally on the array which, depending on the properties 
of the array such as tension and density, can excite 
transverse vibrations which propagate along the array 
axis. The frequency of vortex shedding in hydrodynamic 
flow is related to properties of the flow and the array via 
the empirically determined Strouhal relation [1]: 

/.   = 
Sv 

where S is the Strouhal number, equal to 0.21 in the 
laminar flow regime characteristic of most towed array 
environments, v is the velocity of flow normal to the 
array axis, and d is the cable diameter. Note that the 
normal component of velocity of flow can vary with time 
in response to platform motion and local inhomogeneities 
in the turbulent medium 

The transfer function to which the Strouhal excitation is 
applied is governed by the wave equation subject to the 
boundary conditions of the array under tow. For example, 
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assuming fixed boundary conditions for the array, the 
preferred frequencies of vibration or modes of the array 
corresponding to the solution of the wave equation is 
given by: 

/„ = 

where T is cable tension, m. is mass per unit length of the 
cable, and L is the cable length. Figure 1 depicts notionally the 
interaction of the Strouhal excitation with the structural modes 
of the array. Cable strum due to vortex shedding is strongly 
excited when the Strouhal excitation frequency is closely 
aligned with a resonant mode of the cable transfer function. 

2.2 Wavenumber-frequency analysis 

The decomposition of an array snapshot into its constituent 
acoustic and non-acoustic components is accomplished using a 
wavenumber-frequency, or k-co, transform. The k-co transform 
is a 2-d FFT in space and time. Maximum unambiguous 
wavenumber resolvable is equal to 7i/d, where d is the sensor 
spacing. Resolution in wavenumber is governed by the aperture 
length, L. For non-dispersive propagation, frequency and 
wavenumber are linearly related via 

CP 

where cp equals the phase speed of the wavefront. 

Figures 2 and 3 depict k-tt> plots for two towed arrays 
under consideration in this work. The first exhibits 
superior vibration isolation and higher resolution due to 
its longer aperture. This array experiences only weak 
sidelobe leakage of vibrational modes into the acoustic 
cone. As such, under nominal operating conditions, this 
array does not exhibit a pronounced cable strum 
interference problem. The second array is characterized 
by limited vibration isolation. It is subject to significant 
leakage of vibrational energy into the acoustic cone via 
mainlobe penetration in forward endfire. Leakage of 
vibrational energy into acoustic forward endfire is a 
strong function of own-ship tow speed. For this array, 
which is the subject array for this paper, cable strum 
represents a significant mainlobe interference problem. 

3. BEAMSPACEABF FOR CABLE 
STRUM 

The ABF architecture under consideration in this paper 
consists of a frequency-domain beamspace adaptive 
beamformer. The adaptive beamspace consists of a 7- 

dimensional beam fan with fixed cosine spacing. The 
beam fan translates with steering direction. 

The beamspace ABF derives its cable strum nulling capability 
from the feet that near endfire the beam fan is partially 
composed of beams steered to high wavenumber non-acoustic 
space. 

For each time epoch, the element timeseries are transformed to 
the frequency domain via FFT. A beamspace covariance matrix 
is formed for each frequency bin independently and a 7- 
dimensional beamspace MVDR weight vector is subsequently 
computed. Adaptation control is governed by setting a limit on 
the maximum allowable white noise gain for the adaptive 
processor. 

3.1 White Noise Gain 

White noise gain (WNG) is defined as the gain applied 
by the adaptive beamformer to a spatially white input 
noise process, and is represented by 

WNG = w*w, 

where W represents the MVDR beamformer steering 
vector given by 

_       Ä_1v 
H> = 

vHR-lv 

The vector v represents the CBF weight vector and the 
matrix R denotes the sample covariance for the current 
processing bin. (Actually, the beamformer WNG is a 
quantity equally applicable to the output of the CBF 
beamformer, expressed as \Pv). Beamformer WNG is a 
measure of the level of mainlobe adaptive nulling 
effected by the beamformer steering vector. As such, a 
constraint on maximum allowable WNG can be used to 
control the level of mainlobe adaptation of the adaptive 
beamformer relative to that of the ideal conventional 
beamformer: 

wHw<^~ 
N 

Here ß is a constant ranging from 1 to infinity, with 1 
representing CBF performance (no adaptive nulling 
capability and best robustness to mismatch) and infinity 
representing MVDR performance (most adaptive nulling 
capability and most sensitivity to mismatch). Note that 
under this convention, the quantity 1/N represents the 
WNG of the conventional CBF beamformer, where N 
equals the number of elements in the array. 

The relative WNG is a particularly important metric to 
consider when the source of interference lies within the 
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beamformer mainbeam. Figure 4 depicts the behavior of 
the WNG of the minimum variance distortionless 
response (MVDR) ABF relative to that of CBF for a 
simulation scenario in which an interferer is swept across 
cosine space and permitted to penetrate the beamformer 
mainbeam. An elevation in WNG results from the ABF 
algorithm attempting to drive a mainlobe null concurrent 
with satisfying the MVDR unity gain constraint in the 
steering direction. The three inset figures show ABF 
(shown in red) and CBF (shown in blue) beampatterns in 
the vicinity of the steering direction for three different 
interferer cosine positions. The sequence attempts to 
connect the WNG cosine dependence with the ABF 
beampattem shape as the interferer cosine approaches the 
steering direction. When the interferer is far in the 
sidelobe of the array beampattem (inset 3), the ABF and 
CBF mainlobe beampatterns effectively overlap. In this 
case, a simple sidelobe null (not pictured) is all that is 
needed in order to maximize signal-to-interference-plus- 
noise ratio (SINR). As the interferer penetrates the 
mainbeam, a squinting or splitting of the adaptive 
beampattem occurs coincident with the introduction of a 
mainlobe null. This squinting is the result of the 
beamformer's attempt to maximize SINR by trading off 
interference suppression against excess white noise gain 
in the vicinity of the steering direction. 

3.2 Adaptivity/Robustness Tradeoff 

Figure 4 illustrated how an elevation in WNG occurs in 
response to a mainlobe interferer. We may conclude that 
WNG is a measure of the mainbeam adaptive nulling 
being performed by the ABF. It is important to 
understand that the ABF algorithm is unable to 
distinguish between most forms of signal model 
mismatch and a mainlobe interferer. Thus, the ABF will 
interpret steering vector mismatch as mainlobe 
interference and attempt to cancel it as well. Some degree 
of steering vector mismatch is unavoidable in real towed 
array data applications. Common sources of mismatch 
include manifold uncertainty, sensor calibration error, 
and unmodeled multipath propagation. The beamformer 
signal model is based on an assumption of a perfect plane 
wave with known sensor gain and known relative sensor 
location. As the ABF algorithm will attempt to null any 
data component that deviates from these assumptions, 
self-nulling due to steering vector mismatch is a major 
concern. By imposing a constraint on the maximum 
allowable WNG of the adaptive beamformer, robustness 
to mismatch induced nulling may be introduced. 

Analyses of towed array data have shown that to effect a useful 
level of strum rejection using the beamspace ABF algorithm, a 
fairly aggressive adaptation strategy is required. By contrast, 
signal protection against self-nulling in the cable strum band 

requires a very conservative adaptation approach. In this work, 
it was empirically determined that a WNGC of 6 dB, or a 
maximum allowable WNG of 4x that of the CBF beamformer, 
represents the best compromise between mainlobe cable strum 
nulling and signal preservation in the presence of mismatch. 

3.3 Adaptive Weight Power Scaling 

The white noise gain constraint (WNGC) employed in 
the beamspace ABF architecture is based on the scaled 
projection technique first proposed by Cox et al. [4]. 

The scaled projection WNGC implementation is 
composed of two essential parts. First, the MVDR weight 
vector is decomposed into two orthogonal components, 
non-adaptive and adaptive components respectively, 
using the following beamspace projection operators: 

Pna = 
VV 

vHv 
p = I-P *■ a      x      ■* m 

Second, upon a WNG threshold exceedance, the adaptive 
component thus isolated is scaled such that the WNGC at 
the beamformer output is met exactly. 

The orthogonal decomposition prior to adaptive weight 
scaling is important. This step guarantees that the weight 
scaling will be applied only to the adaptive, or data- 
dependent, component of the ABF weight vector. This 
insures that the scaling process does not modify, scale, or 
rotate the beamformer response to a signal that is 
perfectly matched to the steering vector. Consequently, 
the scaling preserves the constraint of distortionless 
response in the steering direction. The adaptive 
component of the MVDR weight vector is given by: 

wa=Paw. 
It is straightforward to verify that the non-adaptive and 
adaptive components derived in this way are indeed 
orthogonal. The scaled output weight vector is then given 
by: 

where the scalar, k, represents the scaling coefficient We 
then specifiy the WNGC at the output of the beamspace 
ABF processor in terms of a multiplier on the non- 
adaptive WNG, 

wHTHTw  <awHTHTw   . 

Here, T represents the 7-dimensional transformation 
from element space to adaptive beamspace. For a 6 dB 
WNGC the multiplier, a, is equal to 4. Solving the 
constraint equation results in a quadratic on the scaling 
coefficient, k [5]. The result is two solutions for k which 
meet the constraint exactly. We choose the value which 
minimizes the output power of the ABF. This procedure 
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is carried out at each processing epoch and for each 
frequency bin independently. A geometric interpretation 
of the weight scaling procedure is shown in Figure 5. 

4. TOWED ARRAY DATA RESULTS 

Figure 6 depicts frequency-azimuth (FRAZ) plots for a 
typical time epoch for each of four different processors: 
a) the CBF beamformer, 2) the conservative baseline 
ABF beamformer, 3) the aggressive 6 dB WNGC ABF 
optimized for strum rejection, and 4) unconstrained 
MVDR. The baseline ABF represents the WNGC as 
implemented in the present towed array processing 
system. While the details of this WNGC implementation 
are not presented here, the basic design philosophy of 
this ABF algorithm is to emphasize robustness to 
mismatch effects. Upon exceeding the WNG threshold, 
set in the vicinity of 2 dB, the baseline ABF scales the 
adaptive weight vector back to the non-adaptive or CBF 
weight vector. This severely constrains the ability of the 
baseline ABF to effectively null any strong mainlobe 
interference such as cable strum. 

In Figure 6, the presence of a strong interference source with 
multiple sidelobes is observed near broadside in the CBF 
FRAZ display. As expected all of the ABF approaches, 
conservative and aggressive alike, demonstrate the capacity to 
null such a strong discrete sidelobe interference source. This 
result thus serves as a useful consistency check of algorithm 
implementation. 

Next, we direct our attention to the cable strum 
interference near forward sector, i.e. near cosine equal to 
1. In the normalized frequency bandy= 0-0.3, cable 
strum is observed to extend over a wide sector of cosine 
space from forward endfire to near broadside. The 
important differences between the conservative and 
aggressive ABF approaches are apparent from the cable 
strum rejection performance in this frequency band. The 
conservative ABF algorithm does very little to reduce the 
amplitude of the strum interference in forward endfire. 
The bearing extent of the strum is reduced slightly. With 
its 6 dB WNGC, the bearing extent and amplitude of the 
cable strum is significantly curtailed relative to that of the 
conservative baseline ABF algorithm. 

Figure 7 shows raw power spectrum density plots to 
further illustrate the performance improvement realized 
with increasingly aggressive adaptation. Notice that the 
cable strum ABF achieves as much as a 15 dB local 
suppression of the strum-dominated noise floor in the 
normalized frequency band/= 0.1-0.3. The resulting 
noise floor suppression uncovers the presence of a 
narrowband  feature  at / =  0.2  that was  otherwise 

undetectable in the CBF and baseline ABF 
configurations. 

Figure 8 shows the measured WNG plots corresponding 
to the power spectrum density plots of Figure 7. The 
measured WNG illustrates the relationship between 
WNGC and strum rejection. It is clear that at a WNGC of 
6 dB most of the strum noise floor suppression 
performance is realized. Recall that the point here is to 
allow the ABF algorithm to adapt only as much as 
necessary to effect useful cable strum noise suppression. 

5. CONCLUSIONS 

Mechanically induced towed array self-noise limits 
detection performance in passive sonar systems, 
particularly at forward endfire. In this work, a beamspace 
adaptive beamforming architecture for the rejection of 
strong mainlobe cable strum rejection in forward endfire 
was presented. The approach focused on the choice of a 
white noise gain constraint which achieved a suitable 
balance between aggressive adapation for effective strum 
nulling and conservative adaptation for robustness to 
mismatch-induced self-nulling. A WNGC of 6 dB 
relative to the WNG for the non-adaptive steering vector 
was empirically determined to offer the best balance. The 
WNGC implementation was based on the scaled 
projection technique first presented by Cox et al. [4]. 
Significant cable strum suppression performance was 
shown to be possible,, on the order of 15 dB locally 
within the strum interference band. 
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Figure 3: Frequency-wavenumber plot for TB-23 array. 
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